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Abstract. We show the applicability of pure functional programming
for the construction of modules which create procedural textures for
image synthesis. We focus our attention to the construction of generic
combinators and transformers of textures, which permit to write texture
generators of substantial complexity in a very compact and intuitive
manner. We present a concrete package implemented in Clean.
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1 Introduction

1.1 What Are Textures

Generation of graphical objects by programs is the essence of image synthe-
sis. Since those objects correspond often to data structures manipulated using
regular, often generic procedures such as rotations, interpolations, unions, hi-
erarchic embedding, etc., computer graphics is a wonderful training field for
functional programming, with its higher-order functions, ubiquitous recursion,
and declarative style. The literature is very rich. Already Henderson [1] shows
how to compose functionally graphic objects, and more recent works show the
applicability of Scheme, CAML [2] and Haskell [3] to picture generation. In [4]
we described functional methods to model parametric surfaces in 3D. But that
papers focus on modelling and drawing of graphical objects, i.e., choosing the
region where a given figure: a polygon, a zone filled with a colour gradient, etc.
will be placed. These programs operate usually upon discrete data structures.

But the decorations of surfaces need often the implementation of another
process: the texturing, quite different from drawing techniques. There is no des-
tination place the texturing module can choose, it gets the coordinates of the
current point from the rendering engine, e.g., a ray tracer or a scan-line projec-
tor, and decides which colour assign to this point, after a possible transformation
from the scene/model to the intrinsic texture space (inverse texture mapping),
and after analyzing the lighting conditions. Thus, for the texturer the size of its
working area is irrelevant. It occupies the whole of the coordinate space, possibly
infinite. If we forget the lights, and the coordinate mapping (e.g. the projections),
we may say that textures are functions: Point → Colour, where Point is a 2-
dimensional point of the texture space. They are “continuous objects”, and their
assembly from some primitives, transformations and compositions follow differ-
ent rules than drawing of polygons, etc. Textures may be bitmap images, but
the creation of patterns which simulate natural surfaces, geometrically regular



or random decorations, is better done algorithmically. The procedural texturing
has a long history, the reader will find all the information in the book [5], or
in other documents available through the Web, e.g., [6, 7]. The importance of
shaders — user programmable modules which supply textures for ray tracers or
other rendering engines increases every year, more and more rendering packages
include programmable shaders. The history of functional methods in the realm
of procedural texturing is also rather long. Karl Sims [8] used Lisp, and auto-
matically generated compositions and transformations of symbolic expressions
to generate exquisite patterns. One of our primary sources of inspiration was the
package PAN of Conal Elliott [9], based on Haskell. (See also Pancito of Andrew
Cooke [10].)

But despite the fact that the construction of textures is static, dominated by
structuring of data, and some quasi-analytic operations, such as the computa-
tion of gradients, or filtering, and the concept of modifiable state doesn’t need
to play any significant role (mainly some dull reassignments of variables, and
accumulating loops), the only widely spread procedural texturing language is
imperative (very close to a truncated “C”): the RenderMan shading language,
see the book [11], the documentation of the package BMRT [12], or the Web site
of Pixar [13]. Other approaches to procedural shading, notably the work of Pat
Hanrahan [14] also use “imperative” languages, similar in style to RenderMan
(although Hanrahan began with a Lisp-style approach, and moreover his lan-
guage is designed to code very fast programs, exploiting directly the hardware
pipelines, so his shaders are rather declarative,dataflow style stream processors
than imperative procedures. . . ). Reading the shaders’ codes give a strange im-
pression: the essence of shaders is declarative, the coding is “C” like. . . It can
and it should be coded in a more proper style, if only for pedagogical purposes.

1.2 Objectives and Structure of This Work

We show here the naturalness and the ease of texture construction using Clean
[15]. We constructed a library called Clastic, useful for experimentation in tex-
turing. Higher-order functions and overloading of arithmetic operations to func-
tional objects make it possible to design a decent set of combinators and trans-
formers in an very compact way. We may code simply and universally not only
the texture generators, but also the typical bitmap image manipulations avail-
able in known image processing packages, and in interactive texture designers,
e.g., SynTex [16].

The aim of this work is mainly methodological and pedagogical. Clastic has
been used to teach image synthesis, and it is a fragment of a bigger pedagogical
project — the construction of a purely functional ray tracer (another nice field
for declarative programming) equipped with dynamic shading modules. The tex-
turing library is available separately. It has not been optimized (yet) for speed.
Our main leitmotif was to identify useful high-level abstractions, and to show
how to construct complex textures in a regular way, using standard functional
composition techniques, and exploiting the geometrical invariance of graphical
objects as far as possible.



The structure of the paper is the following. After the introduction we de-
scribe the geometric framework of the package, the primary building blocks, and
simple texture combinators and transformations. We show how to construct ran-
dom patterns (various “noise” textures), and also how to generate tesselations
possessing non-trivial symmetries. The examples of programmed textures have
been chosen to show the specificity of abstract functional coding, not always
optimal; some functions within Clastic are coded in a more efficient way.

We will abuse the language, and call textures the final rendered bitmap images
as well. For definitness and for testing we use simple Cartesian coordinates, a
Clean data structure V2 x y represents a 2D point with real x and y, and a
record {tr,tg,tb} belonging to the type RColour with real components in [0 –
1] is a RGB colour1. We underline the fact that both types belong to a class
of vectors, with all standard operations thereupon, e.g., an overloaded operator
*> multiplies a point or a colour by a scalar, we can subtract them, etc. This is
needed for generic interpolation procedures.

The functional layer of Clastic is platform-independent, but the interface
used for the generation of examples works under the Windows Clean IO system.
It permits the creation of some rendering windows in their “virtual” Carte-
sian coordinate systems, and launches iterators which fill the Windows Device-
Independent Bitmaps, unboxed arrays of pixels, whose display is ensured by the
Clean IO system. The interface permits also to read BMP files, to convert them
into texturing functions, and to save the rendered images. We show here only
the definitions of texturing functions, they are the only entities which have to
be programmed by the user. The examples are simple, since our main presen-
tation objective is to show how to make them from basic blocks, in a didactic
environment. In order to follow the examples the reader should be able to read
code written in a typical modern functional language. Some Clean particularities
should be explained, especially for readers acquainted with Haskell. The sharp
(#) symbol introduces a local definition (like let). The functional composition
operator is o, and the unary minus sign is denoted by ~. Bars: “|” introduce
alternative clauses, as in Haskell, but the default clause “| otherwise = ...”
can be shortened to “=”.

2 Primary textures

Almost any reasonable real function on points can be used as the heart of a
texture generator. Such simple function: radGrad p = norm p *> RWhite con-
structs a radial, linear gradient of intensity, and angCol p = hsvtorgb (angle
p) 1.0 1.0 — an “azimuthal rainbow” shown on Fig. (1:A). Clastic defines sev-
eral useful vector and colour functions, such as norm computing

√
x2 + y2, angle

yielding atan2(y, x), or hsvtorgb converting the set Hue-Saturation-Value into
a RColour record. Figure (1:B) visualizes the function

tacks = cmix RGrey RBlue (sscaled 0.1 tck)

1 The Clean library defines the type Colour with components in [0–255]



where

tck (V2 x y) = floor(sin(x+sin(y+sin x))) - floor(sin(y+sin(x+sin y)))

where cmix is a linear interpolator of colours (with its third argument usually
in [0 – 1]), and sscaled is a uniform scaling transformer of a texture function.
We note immediately that although such functions can be used to generate
interesting tilings, texture design needs simpler, regular methods, not requiring
an impossible mathematical insight. It is not obvious that the texture polyg k
(Boolean, needing some colour mapping for its visualization) given by

polyg k (V2 x y)

# kd = Dpi/fromInt k //Dpi = 2π
# kdj= kd * floor (atan2 y x / kd)

# skdj=sin kdj; ckdj=cos kdj

= (x-ckdj)*(sin(kdj+kd)-skdj)-(cos(kdj+kd)-ckdj)*(y-skdj)<=0.0

represents a regular polygon with k vertices. The interested reader will find
more textures of this kind in [17], and in the gallery of PAN images. But we
see also that the symmetry and the periodicity of the texture generator makes
definitions very compact, and this will be the main leitmotif of this section: if
possible, avoid decisional structures (e.g., conditionals) in composite textures;
replace the relation “belongs to W” by the characteristic function of W; exploit
directly the primitive function symmetries. In such a way the texture becomes
more an ordinary function than a piece of program, and may be more easily
designed and composed. Such primitives as the polygon, a regular star and many
others are built into Clastic.

A B C D

Fig. 1. Simple geometric patterns

The most typical functional texture is a binary filtering relation, say, H(x, y) > 0,
which separates the space in two zones, the interior and the exterior of an object.
The Boolean value of the relation may be transformed into one of two colours,
or used as a mask for other textures, as shown on Fig. (1:C). This checkerboard
mask is just sin(x)− cos(y) > 0.



2.1 Basic building blocks, overloading, and combinators

The basic abstraction which replaces the relation r > 0 is the function θ of
Heaviside, which may be defined as step x = if (x<0.0) 0.0 1.0. In fact,
Clastic uses very heavily the overloading, and our step is applicable to other
domains as well. The real definition is:

step :: !a -> a | <, zero, half, one a

step x | x<zero = zero

| x>zero = one

= half

i.e., it is a strict function on a type which may be ordered, and contains the
overloaded constants zero, one, and half, whose meaning is evident. This is
an important point, several texture generators in Clastic are written in a way
enabling the application of the Automatic Differentiation machinery, which per-
mits to compute gradients of functions, precisely and easily, but those functions
must be defined on entities which generalize real numbers. The details cannot
be discussed here. Moreover, we have overloaded the arithmetic operations on
functional objects, which permits to define several functions in a combinatoric
style, without explicit parameters, e.g., f = one + sin. For simplicity, where
this overloading is not explicitly needed, we shall write 0, 1, etc.

Thus, the checkerboard (real valued) mask above may be defined as chkb
(V2 x y) = step (sin x - cos y). Masking out the (real) texture tx outside
the unit disk can be written “normally” as f p = step (1-norm p) * tx p, or
as f = step o (one-norm) * tx. From step we may construct by subtraction
the function pulse, equal to 1 between 0 and 1, and zero outside.

pulse = (id - translated one) step //where

translated a f x = f (x-a)

and use it to construct bands by applying it to x and ignoring y. Product of two
orthogonal, scaled pulses creates a rectangle. Such elementary blocks are frequent
in RenderMan shaders which make geometric patterns, and they belong to the
standard panoply of builders of signal processing algorithms.

We need also several filtered (smoothed) primitives, e.g. the ramp function,
going linearly from 0 to 1, often used for clamping the colour components,
or smoothstep which interpolates between 0 and 1 using the Hermite cubic
h(x) = 3x2 − 2x3, and ensures smooth, differentiable transitions between dis-
tinct areas. We complete the collection by various replicators, which are simply
periodic functions permitting to reduce the coordinates of a point to the period-
icity interval of the replicator. Most common is the function frac which returns
the fractional part of a number, reducing it to [0 – 1]. Below we see some plots
of primitive blocks, and periodicity generators. Such functions are usually con-
structed ad hoc. A variant of smoothpulse was used in our woven patterns, see
Fig. (14:A, B), and symteeth generated the stripe patterns on Fig. (1:C).



ramp = max zero o min one

sawtooth = pulse*id

filteredpulse

smoothstep = pulse*hermite +translated one step

smoothpulse

trainpulse

symteeth = symtrain abs

2.2 Combination of Shapes

Inequalities H(p) > 0 specifiying “solid” objects: polygons, disks, etc., make up
their implicit representation, well known in the domain of 3D synthesis also, see
[18]. The construction of unions or intersections of such objects is easy, with
the usage of masking or arithmetic combinations, e.g., if two zones are given by
H1(p) > 0 and H2(p) > 0, the function max(H1(p),H2(p)) yields their union,
and min — the intersection. The negation is the complement. In the space of
characteristic functions, the intersection of A and B is their product, and the
union is given by A + B − A · B. In order to cover one texture by another, we
have the masking operator, which has been used to create the Fig. (1:C):

fmask h f g = \x -> if (h x <> 0) (f x) (g x)

We leave to the reader the construction of Fig. (1:D) by a combination of a unit
disk, two smaller and translated disks, and a half-plane (step x). In fact, one
may create only yin, and obtain yang by a half turn.

Boolean operations (2D Constructive Solid Geometry) and masking, are not
the only combinations possible, we end this section by showing another, non-
trivial combination: the halftoning, where one texture modulates another. If we
take the interior of the disk x2 + y2 < 25, and put inside a variable grey level:
g = 0.8− 1/14

√
(x + 3.5)2 + (y − 2.8)2, we obtain a simulation of a mat sphere.

Very often such colour gradients are used to augment some 2D graphics by
cheap 3D effects. But g may be used as a specific mask of a periodic function:
h = 1 − θ(sin(ωx) − cos(ωy) + 2.0 − 4.0g) with a sufficiently high frequency ω.
Higher g means greater statistical chance to obtain h = 1. The result is displayed
on Fig. (2:A). The Figure (2:B) is another variant of this technique, but here the
modulating density is reconstructed from a bitmap image transformed by Clastic



into a texture, and the modulated pattern is a “white noise”, a high-frequency
random function (so, it is rather dithering than halftoning).
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Fig. 2. Texture combinations and deformations

3 Transformations and deformations

Since textures are functions η :: Point → Something, where Something is
usually a geometric scalar (a real, a colour, etc.) they may be “post”-transformed
by acting on their co-domain space: η̃(p) = T

(
p, η(p)

)
. We may change the

colours, multiply one texture by another, etc. But the textures may also undergo
a global, or a local geometric transformation in the domain space, and this is
the essence of all deformations.

Textures, as other implicit graphical objects transform contravariantly. Sup-
pose that ζ is a texture (function), and that we have a transformation R (a
rotation, a translation, a local warp, etc.) acting on points, moving them. We
want to find the representation TR of R acting on ζ. The fundamental property of
a representation is that it constitutes a group homomorphic to the original: R1R2

generates TR1R2 = TR1TR2 , and R−1 → TR−1 = (TR)−1. It is easy to prove
that the definition of ζ ′ = TRζ as ζ ′(p) = ζ

(
R−1p

)
, gives a correct represen-

tation. For simple affine transformations Clastic define the texture transformers
using directly the inverse operations:

translated a f = \p -> f (p-a)

scaled c f = \p -> f (p/c)

rotated a = rotated_cs (cos a) (sin a) //where

rotated_cs co si f = \(V2 x y) -> f (V2 (co*x+si*y) (co*y-si*x))

(Note the signs in the last line.) The scaling may be non-uniform; we have
overloaded the multiplication and the division for vectors (element-wise), which
is useful, even if mathematically a bit bizarre. . .

Clastic implements many other operations: symmetries, transpositions, repli-
cations (coordinate reduction), etc. But in general case if the user wants a spe-
cific, complicated, especially local (point-dependent) transformation, he must



know how to construct its inverse, and this may be very difficult. At any rate this
must be provided. Then, the package uses a simple generic combinator-deformer
transf which acts on textures in the following way:

transf trf txtr = txtr o trf

(or: transf = flip (o) for combinatoric maniacs. . . ) with trf being the in-
verse transformation. The properties of deformers are not always obvious, e.g.,
it is easy to forget the contravariance which implies that (transf f1 o transf
f2) tx yields the texture tx o f2 o f1.

If this function computes only the displacement (“warping”) of the current
point, the appropriate deformer is displace trfun txtr = txtr o (id+trfun).
Random displacements, especially turbulent ones are particularly useful to gen-
erate irregular wood grain, distorted marble veins, etc.

Fig. 3. The lense effect

The notorious eddy shown on Fig. (2:C)is
the result of applying a deformer

eddy ampl damp p

# (r,phi) = topolar p

# nphi = phi + ampl*exp(~damp*r*r)

= V2 (r*cos nphi) (r*sin nphi)

and the “lense” effect on Fig. (2:D) is an ex-
ercise in optics as shown on Fig. 3.

The package contains several exemplary
deformers, including more “physical” vortices
useful for simulating whirling cloud patterns, such as on Fig. (4:A), and also some
standard 3D mappings/projections discussed in the next section.

But suppose that we want to apply our “eddy” deformer to different zones
of the texture space, and generate the celtic pattern on Fig. (4:B), or creating
displaced and deformed lenses which would simulate water droplets on another
surface. We will see that we must operate with both, direct and inverse operation,
so technically the problem may be nasty. Composing global transformation is not
difficult, for example it is obvious that a rotation of a texture about an arbitrary
point may be realized in 3 stages: shifting the rotation centre to zero, rotating,
and translating the texture back. Clastic defines:

rotatedAbout p0 angle //of a texture

= translated p0 o rotated angle o translated (~p0)

For general warping, e.g. a composition of local translations shown on Fig. 4 (C),
the situation is more complicated. A function G of type Point → Point which
undergoes the geometric transformation R is a composition RGR−1, and the
appropriate representation in the domain of textures is ζ

(
R−1G−1Rp

)
. Clastic

implements three simple, generic deformer modifiers, its translation and rotation:

trfshift p0 deformer = ((+) p0) o deformer o ((+) (~p0))

trfturn ang deformer = rot2 ang o deformer o rot2 (~ang)
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Fig. 4. More complicated mappings

where rot2 rotates a vector, and of course the scaling. The “pentapus” on Fig.
(4:B) is obtained by applying to the unit disk a 5-fold rotated and shifted eddy
deformer. See also the Fig. (4:D). But suppose we want to translate a region
near (0, 0) using the transformation x′ = x + exp(−α|x|)a. This is not only
non-invertible directly, but if a is too big with respect to the warping range α,
the texture may fold disgracefully over itself, with a loss of structural informa-
tion. The package contains a Newton solver for such equations (for small a),
and a procedure which iterates (using foldl) small warping steps over a list
representing a curve. The main purpose of this section was to show that such
transformations can be abstracted, used generically, and easily composed, which
makes their coding sometimes an order of magnitude shorter than the equivalent
“classical”, imperative approach.

3.1 3D textures

Texturing of surfaces in 3D is also a geometric transformation, and Clastic offers
many basic tools for such manipulations. It implements the 3D vector algebra,
and includes a simple, non-recursive ray tracer able to render spheres, cubes,
and cylinders (and anything the user may wish to implement himself; for us this
is just a part of testing interface). The viewport is attached to a virtual camera,
the appropriate procedures generate a ray through the rendered pixel, find the
intersection with the object, and compute the normal to the surface. The user
has only to submit a texture function with Points belonging to the 3D space.
If the user wants to cover the surface with a “wallpaper”, an external image,
as shown on Fig. (5:A) which presents the True Face of our Moon, Clastic may
lift the 2D texture, e.g. a planet surface projection parameterized by (ϑ, ϕ), into
a function of (r, ϑ, ϕ). The rendering is trivial, and appropriate functions are
extremely short, the only interesting problems come from the lighting of such
textures, but we cannot discuss this issue here. The remaining pictures on Fig.
(5) show a marble sphere, another one covered with a bump-map, showing the
interplay between 3D and 2D texturing processes, and a “wooden” cylinder.
These constructions need a reasonably complete set of random noise generators.
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Fig. 5. 3-dimensional texturing

4 Random Textures

Since all “natural” surfaces possess some randomness, a rich collection of noise
generators belongs to a standard panoply of shaders. In this section we will treat
a few generic techniques, random textures are functions as any other generator,
and to prevent all confusion: they must be state-less, deterministic functions
which appear random, but which yield always the same value for the same ar-
gument. It is not possible to use a typical (even very good, such as Mersenne
Twister), seed-propagating random generator during the texture generation, the
results would depend on order of operations. The subject is known, and well
covered by the literature, e.g., by the book [5]. See also a very instructive site of
Ken Perlin [19] and the tutorial pages of Hugo Elias [20].

4.1 Basic generators

Perlin based his famous noise on the interpolation of random values stored once
in an array. Those values were supplied before the rendering, using some standard
random sequence generator. In a functional approach it is not very natural, the
alternative is to use directly a pure function, as advocated already by Ward [21].
A typical example of such a function, of type Integer → Real may be

ergodic n

# n = (n<<13) bitxor n

= toReal((n*(n*n*15731+789221)+1376312589))/2147483648.0

adapted to 32 bit integers and returning a real in [−1 : 1]. We call such func-
tions ergodic (rather than “random”), because they are stationary, unstable,
returning results without visible correlations even for neighbouring arguments.
(Ergodicity is a physical term, computer scientists use to call such mappings
hashing functions. . . ) Other parametrisations are also used in our package. In
order to produce 2-dimensional distributions we may combine the arguments,
e.g., defining ergxy ix iy = ergodic (173 + (13*ix) bitxor (37*iy)), as
suggested by Ward in Graphic Gems.

Real (scalar) random distributions in the space of real (x, y) are based on
a gradient version of Perlin noise visualized (specially) on Fig. (6:A) with the



viewport size ≈ 12. It is generated by the classical algorithm: the points with
integer coordinates q are attributed a random vector g — a pair of numbers
in [−1 : 1]. Then, for a point p neighbouring 4 nodes qi we compute ξi =
(p− qi) · gi, and finally a bi-Hermite (or better) interpolation combines these
four contributions. Clastic contains also generators for vector noise in 2 and 3
dimensions.

4.2 Noise functions

The rest is relatively trivial, and consists in applying the already described tech-
niques of functional compositions and transformations, but since this is an ap-
plication paper, we discuss shortly what Clastic can do with the basic noise
generators.

First, as shown on Fig. (6:A), and on Fig. (5:C) a noise can be interpreted as a
height field, and after computing its gradient (for which Clastic has appropriate
tools), it may be used as a bump-map.
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Fig. 6. Some random textures

Even a dull, apparently featureless basic noise instance over a region of size 1 –
2 may be useful, if an appropriate colour map is used, see Fig. (6:B). There is
nothing original here, the only advantage of Clastic is that such transformations
are 1-line programs, not by specific obfuscate tricks, but by the genericity of the
whole design. Even the basic discrete noise on integer nodes is useful for random
tesselations, such as the Truchet pattern shown on Fig. (6:C) where the discrete
noise is used to choose one of two elementary cell patterns.

Clastic contains some accumulating functionals permitting to construct wide-
spectrum “fractal noise” and “turbulence” patterns by summing appropriately
scaled and weighted basic noise instances:

∑n
i=0 (1/2)iκg

(
f02ip

)
, where κ is

usually of the order 1, and the number of octaves n varies typically between
3 and 9. If composed with a sawtooth replicator, it may generate marble-like
patterns like that on Fig. (6:D)

If g is the base noise we obtain Fig. (7:A), and if we sum its absolute value,
we obtain the notorious turbulence pattern on Fig. (7:B), containing interesting



filamentary structures. Applying to the turbulence some nonlinear transform
and thresholding (1 line of code):

clouds p=1.0-exp(~4.0*max 0.0 (0.25+fractsum 7 1.1 0.6 p))

generates the clouds used to generate the tornado on Fig. (4:A).

A B C D

Fig. 7. Other random variants

4.3 Random deformations, and random placement of textural
objects

Even more interesting are transformations of some geometric patterns, with
noise functions (especially turbulent) used as deformers. One noise can per-
turb another one, as shown on Fig. (7:C) If a 3-dimensional cylindrical gradient
f(x, y, z) =

√
x2 + z2 is deformed by random vector fractal sum displacement,

rotated and cut by a surface, in a very few lines of code we obtain the generator
which yields the Fig. (5:D).

If the basic noise is scaled so that every pixel has integer coordinates, the result is
a random “white noise” pattern, which may be used e.g. to dither other textures.
But random spreading of bigger objects, known as “bombing”, such as shown on
Fig. (7:D), is more difficult. This problem is discussed in [5], and we recognize
that in a point-wise, implicit texture generation framework, the solutions are not
natural. One possibility is to construct a union of placed objects, with random
shift attributed to each of them. This may be very costly.

We present here the “jittering” method, which uses only the standard noise.
The technique is similar to those applied to generate the Truchet pattern on Fig.
(6:C). An object (here: a star) occupies a unit cell, with intrinsic coordinates
between 0 and 1. The (integer) cell coordinates feed the ergxy generator, which
supplies the shift of the object inside the cell (and it might serve also to change
its colour, size, or to disallow its rendering). The fractional part of the point
coordinates are used normally for rendering inside the cell.

If the object approaches the cell boundary, it may get truncated, so a more
robust algorithm analyses also the cell neighbours. As we see, Clastic handles
gracefully this problem.



5 Symmetries and Tesselation

Pavements, wallpaper, rugs. . . — the necessity to generate textures possessing
tiled symmetric patterns is obvious. Texturing does not “redraw” them. In order
to replicate a shape, the argument p of the generator must be appropriately
reduced. The details of the reduction depend so strongly on the result the user
wants to obtain, that a method which would be universal is a dream. General
tesselations in our functional texturing framework will be discussed elsewhere,
here we discuss some simple techniques which produce such tiles as on Fig. (8:B),
starting with any motif (Fig. (8:A)) placed near the origin of the coordinate
system. The main objective of this section is to extract some useful, generic
abstractions .
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Fig. 8. Simple (and less so) tesselations

The first concept which must be understood is the symmetry of the design, the
set of transformations which leave the texture invariant. We know that there are
17 so called “wallpaper groups”, containing translations together with rotational,
reflective and glide-reflective (combination of an axial reflection and a translation
along the axis) symmetries, see [22–24], or dozens of other books, e.g. [25], and
references available on Internet. We have to distinguish between three distinct
entities:

1. The Unit Cell (UC), the basic fragment of the “crystallographic”, transla-
tional lattice. Its translations fill the entire plane. IF UC is rectangular, the
tesselation is trivial, this is what we see as typical background motifs on
windowing systems, Web pages, etc.

2. The Fundamental Region (FR) (usually a fragment of the Unit Cell), which
generates the plane through all its symmetry operations.

3. The Motif Region (MR), which does not need to cover any of the above.

A non-trivial FR-Motif combination is shown on Fig. (9), a tribute to Escher.

5.1 Translational tiling



Fig. 9. Escher reptiles

Fig. 10. Unit Cell attributes

Translations are handled universally,
independently of other symmetries,
and they are always present if the tex-
ture occupies the entire plane.

Clastic defines a special data struc-
ture, UnitCell constructed by the
specification of its two non-Cartesian
axes, S and T . It contains all the con-
version procedures permitting to de-
compose the current point (vector) in
local coordinates, to reduce these coordinates, and to reconstruct the reduced
cartesian vector. For the simplest symmetry, called P1, for which FR and UC
are identical (it is a parallelogram) nothing else is needed, unless the Motif is
shared between neighbouring cells.

Fig. 11. Hexagonal, P1 tiling

The Figure (11) shows that UC must
be cut into 4 pieces in order to re-
construct the hexagonal design. The
user must supply the motif definition
and its location. So, in which sense
the genericity of Clastic may be help-
ful here?

– The reduction of the Motif area
within the UC is the only thing to
do.

– It is easy to define some universal
clichés; Clastic has a universal gen-
erator of all hexagonal patterns, the user specifies only two (corner) points
inside the UC, the rest is unambiguously constrained.



– The reducing procedure is sensible to the distance of a point to the UC
edge, and as a “free bonus” it may add some “mortar” texture to the basic
repetitive filling.

All is composable and deformable, and seeing that the classical brick wall has a
hexagonal topology, we needed just a few lines to generate the textures on Figs.
(8:B, C, and D). One more comment seems useful. The coordinate reducers are
functions Point → Point, and they behave as deformers. Their composition
requires some attention in order not to distort, or to break the texture inside.

5.2 Rotational symmetry; Group P3

Our second example is the group describing a rotational symmetry of order 3,
which generates Echer reptiles.

Fig. 12. P3 group: UC, FR, and a pattern with two different FRs

The Unit Cell is a rhombus with 60 and 120 degrees. Only one third of it, the
central smaller rhombus, is the FR, the remaining parts are obtained by rotations
(to which we attached some colour changing procedures while generating the
reptile tiling).

A B C D

Fig. 13. More tesselations

The relation between the Motif and the Fundamental Region is not universal,
and the generation of the Fig. (13:A) ignores this. If the Motif occupies the FR,



the reducing procedure for P3 is extremely simple, less than 10 lines: it applies
already known rotatedabout transformer, using as pivots the corners of FR
which are inside UC, and thus filling the Unit Cell. In more complicated cases,
such as typical Escher patterns, the human insight is necessary, although there
are papers which deal with automatic “Escherization” of arbitrary shapes.

5.3 More “wallpaper” symmetries. . .

Clastic implements a subset of all wallpaper groups, this work is still in progress.
But no new techniques are needed, everything is reused. We had just to add a
few primitive reducers for 4- and 6-fold rotations, mirrors, and glide-reflections,
and again, in a few lines it was possible to construct the reducers for the P6ML
(“kaleidoscopic”) group, depicted on Fig. (13:B,C), and a generic (arbitrary pro-
portions, arbitrary filling) classical parquet generator, whose boundary has the
symmetry PGG, containing some glide-reflections (about diagonal axes, not im-
mediate to see. . . )

6 Woven patterns

Tiling is not the only generic method to produce repetitive patterns. Another
technique is weaving, knitting, etc., the interlacing of linear objects is also om-
nipresent (and several programming applications helping to design fabrics are
available commercially).

A B C D

Fig. 14. Woven patterns

We added to Clastic a small subpackage which can generate the patterns shown
on Fig. (14). The user specifies his “sett”, the sequence of thread colours and
their width, and the virtual “loom” driving protocol: a Boolean function on
(x, y) (Integers!) which tells the texturing function whether at a given point
the horizontal thread masks the vertical or vice-versa. The darkening decoration
needed just a variant of smoothpulse as a mask.

This work is not complete, manufacturing baskets, rustic chairs, ring armours,
etc. with hexagonal or octogonal symmetry may be technically more involved,
requiring some symmetry considerations, but Clastic is prepared to deal with
such problems.



7 Further Work and Conclusions

Our texturing library belongs to a broader pedagogical project: teaching of image
synthesis with the aid of functional methods. Clastic is less suitable for those
who just need a few textures, more for those who want to learn how to do them,
and how to build texturing applications, with better interfaces, and well tuned
generators of regular patterns and noise. It contains a rich collection of utilities,
including some bitmap processing routines, noise generators, geometric tools,
and equation solvers. The advantage of the presented functional methods with
respect to, say, the Renderman shading language, is twofold.

Universal functional languages are rich enough to write complete rendering appli-
cations. Their data abstraction facilities make it easy to implement recursive ray
tracers, and also to exploit them as the scene description languages, with the
definition of objects, cameras, light sources, etc. Their genericity: overloading
based on a system of type classes, and the possibility to use partial applica-
tions and other higher-order functional objects, facilitates the implementation
of reusable building blocks and transformers for all kind of graphical objects.
The texturing is just a concrete application of this methodology.

Textural functional objects are convenient for teaching. Some informal specifica-
tions as “shifted threshold”, or “filtering out the Blue component of the texture
A by a chessboard pattern” have almost direct, very short, (often one line)
concrete implementations. Image synthesis involves geometry, numerics, some
knowledge of optics, etc., and requires many test runs. Even if the impatience
of students makes them often looking for speed in order to economise computer
time instead of their own, the possibility to transform an abstract specification
in an algorithm, and to debug it fast before converting it into an optimized
version, is very important.

Only part of this work is reported here. The tesselation sub-package will be pre-
sented elsewhere. We have omitted also the discussion of the Automatic Differen-
tiation subpackage: a generalization of the functional differentiation framework
described in [26] to general vector structures, permitting an easy and precise com-
putation of gradients (in x and colour spaces), and useful for the construction of
bump maps, contours of implicitly defined areas, etc. This issue is discussed in
the Clastic tutorial available from the author. The interface to a ray tracer could
not be discussed either. Complete shaders need not only a point in the texture
space, but are provided by the rendering engine with the actual surface point in
the scene space, the normal to the surface, the parameters of light sources, the
pixel resolution (e.g. for the anti-aliasing) etc. While functional methods permit
elegant and natural coding of these features, they remain outside the aims of
this paper.
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