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Abstract

We show how to implement functionally the reverse, or adjoint strategy within the domain of
Automatic Differentiation techniques – tools permitting to compute numerically, but exactly
(i.e. up to the machine precision) the derivatives of functions coded by computer programs.
The imperative coding of the reverse techniques is tedious. It requires the reversal of the control
thread of the program, and it recomputes the derivatives through the adjoint statements
beginning with the definition of the final result, and ending at the independent variables.
Usually a special external data structure, known as the “tape” is used to store the adjoint
statements. It is created during the “forward” stage of the program, and then interpreted
backwards. We show how to construct purely functionally the equivalent of such a tape, but
we present also a more interesting model based on a variant of Wadler’s backward propagating
State Transformer monad. Our package, written in the lazy functional language Haskell, uses
the overloading of standard arithmetic operations and is very simple to use, permitting the
calculation of M -dimensional gradients, and also of higher derivatives.

1 Introduction

1.1 The arrow of time

At the fundamental level almost everything in this world (strong interactions, electromagnetism
and classical gravitation) is neutral with respect to time reversal. If a theory (e.g., relativistic
quantum physics) predicts some acausal phenomena, such as particles propagating backward in
time, they can be always reinterpreted as anti-particles behaving “normally” (but whose energy
gets a ‘minus’ sign. . . ). Only for composite, statistically described systems such notions as entropy,
irreversibility and arrow of time enter into play in a critical way. We are used to this, and such
problems are not en vogue anymore.

However, for a computer scientist the entropy which is information, is a fundamental, elemen-
tary concept, and the causality, the changing of states and chronologically sane scheduling of events
constitute the basis for any “natural” programming framework. The computations are essentially
irreversible, the states propagate forward in time, and the mapping between the “computation
time” (the ordering of events) and the physical one is natural. (Of course, in the realm of quantum
computing all those questions became again very interesting and non-trivial, but we shall not treat
those issues here.)

Both in physics and in computations it is not the arrow of time itself which make the story
interesting, but a speculation what would happen if both time directions coexisted, if the world con-
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tained two antithetic flows of temporal entities. . . . In physics it is relatively simple, as mentioned
above, the particles and antiparticles coexist; when two of them annihilate (or are created out of
energy), it may be interpreted as the change of the propagation direction of one of them. But if the
creation/erasing of information is involved, the result is a severe headache, see the science-fiction
book of Philip Dick [1], where the author suggests that rising of the dead is a bit simpler than
un-writing a book. . . .

However, the “reinterpretation” of anti-causal flows, the computation models where antithetic
flows of data dependencies coexist are not so rare, although they are usually presented in a less
exotic manner. In general they belong to the domain of goal-oriented computing.

• A bottom-up parser which transforms a program source into a syntactic tree, synthesizes the
semantic attributes of nodes from their descendants. But the inherited attributes descend
from the root down to the leaves! Of course, technically this is a well understood and solved
problem, but conceptually it is slightly “crazy”, the construction of the root belongs to the
future with respect to the processing of leaves, the inherited attributes “propagate backward
in time”. We shall return to this model, see [2].

• A common technique in the domain of creating animations, and in robotics is the “inverse
kinematics”. It consists in finding the driving forces which should be applied to the articu-
lations and intermediate moving parts (e.g. the elbow) of a physical or simulated robot, in
order to achieve the goal: to construct the trajectory of the final effector (its hand). This is
a typical adjoint problem which may be formulated as anti-causal, see [3, 4, 5].

• The back-propagation of error in multi-layer neural networks is also a classical adjoint,
“counter-clock-wise” process, conceptually quite similar to the reverse differentiation pro-
cedure mentioned below, see [6, 7].

• Finally, the reverse (adjoint) mode in the automatic differentiation technology, which is
the main subject of this paper, is a classical example of a non-orthodox view of processes
propagating in time.

1.2 Automatic differentiation

We shall present a lazy functional implementation of the Automatic Differentiation (AD) technique
– an established solution to get accurate and fast derivatives of numerical expressions represented
by programs. The AD methods are based on two principles:

• any program (streamlined along the chosen decisional paths, i.e., with all the conditionals
and eventual branching resolved) can be seen as a composition of primitive functions whose
derivatives are known,

• and can then be differentiated using the chain rule: df(g(x)) = f ′(g(x))dg(x).

The derivatives are calculated numerically by an augmented original program. The results are as
precise as those obtained by symbolic methods, (no finite differences are ever used), and they are
generated much faster. There is no need for symbolic indeterminates, term simplification, or other
manipulations typical for the Computer Algebra approach to the differentiation. The augmented
program may be output by a preprocessing package, or result from a modification of the original
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program semantics, through the use of overloaded arithmetic operators acting upon composite
data structures which contain the original numerical values, and also their derivatives. There are
2 principal modes of AD:

1. The forward mode in which the intermediate derivatives are computed in the same order as
the program combines its component subexpressions. This is the most classical approach,
the differentiation machinery behaves as a human who would augment the code by addi-
tional instructions computing the derivatives (and reusing the shared expressions assigned to
temporary variables).

2. The reverse, or adjoint mode, in which the intermediate derivatives are computed in the
reverse order, from the final result down to the independent variables. The reverse mode is
better for computing multi-dimensional gradients of one function, because its complexity is
(in principle) independent of the number of input variables.

The differentiation of numerical computer programs is a domain which is at least 30 years old,
and its applications are numerous. The bibliography and the number of relevant software packages
are huge, see [8, 9, 10], and the information stored on the World-Wide-Web [11]. The necessity
of computing the derivatives fast and precisely is obvious for everybody active in the domain of
scientific and technical computations, and the practical aspects of this research resulted in its
concentration on mainly such languages as Fortran and C/C++. Functional languages from this
perspective are less popular. However, in [12] we have shown some potential advantages of lazy
functional programming, our package written in Haskell permitted to compute the derivatives of
any order in a particularly easy way, almost transparent to the user.

We present now the adjoint model, and we begin with an example, for simplicity we restrict
the presentation to the 1-dimensional case. Suppose that we need z′(x) given by the program:

y = sin(x); z = y2 − x/y (1)

Here x is the independent variable, y is auxiliary, and z is the final, scalar result. For all (relevant)
variables ζ (here: x, y, z) we define their adjoints: ζ = ∂z/∂ζ. In general, if the program contains
an intermediate assignment ξ = f(ζ, η, . . .), this implies the following assignments for the adjoints
(note their imperative character; the adjoints are updated):

ζ ← ζ + ξ
∂f

∂ζ
; η ← η + ξ

∂f

∂η
; . . . (2)

but the adjoint statements must be processed in reversed order, ξ needs ζ, but ζ needs ξ which
is defined when ξ is used. The differentiation machinery should produce the value of x, easily
generalizable for the case of many independent variables. We know immediately that z = 1, but
this data can be used when z is known, so the computational process decomposes into two antithetic
phases:

First y and z are computed, during the “forward phase” of the program, and then the control
thread is retraced back, beginning with the trivial initial assignments: z ← 1; x← 0; y ← 0 :

z = y2 − x/y; yields x← x + z(−1/y);
y ← y + z(2y + x/y2); (3)

y = sin(x); yields x← x + y cos(x) .
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So, finally x = −1/ sin(x) + cos(x)
(
2 sin(x) + x/ sin(x)2

)
is the desired value of ∂z/∂x. In a strict

language the second phase code must be physically constructed, and executed when the values of
all variables are known. Our lazy solution is a “circular program”, an application of the idea of
Richard Bird, who shows in [13] how to code a one-pass algorithm operating upon data which will
be known later.

We present now the general framework used in the implementation. We assume that (x1, x2, . . . , xM )
is the set of independent variables. Having streamlined the control structures, we can model a typ-
ical numerical program by a set of functional definitions:

xM+1 = fM+1(x1, . . . , xM ) ,

xM+2 = fM+2(x1, . . . , xM+1) , (4)
. . .

xN = fN (x1, . . . , xN−1) ,

where for uniformity we have named “xp” all the intermediate expressions. This set may be
completed by xk = fk(), for k ≤ M . The last few of the equations (4), perhaps just the last
one, determine the final outcome of the program. The functions f are typically very sparse,
we can reduce everything to unary or binary operators (increasing appropriately the number of
intermediate variables).

For each instruction g ← f(e1, e2, . . . , ek) the adjoints of the RHS arguments are computed by

ej ← ej + g
∂f

∂ej
. (5)

The derivatives are defined by the chain rules obeyed by the Jacobi matrices:

Jik =
dxi

dxk
= δik +

i−1∑
j=k

∂fi

∂xj

dxj

dxk
. (6)

This equation gets the form J = I + DJ, where

Dik =
∂fi

∂xk
=


0 0 0 . . .

∂f2/∂x1 0 0 . . .
∂f3/∂x1 ∂f3/∂x2 0 . . .

...
...

...
. . .

 . (7)

By following the chain, beginning with xM+1, and terminating at xN , we may calculate Jik itera-
tively, and this is the standard “forward” mode. But it is possible also to start with the last partial
derivatives, and to follow the chain backwards. This is interesting from the efficiency point of view,
if we need only the last row of the Jacobi matrix, i.e., the elements xk = JNk = dxN/dxk. (This
is the typical case for the sensitivity analysis (the dependence of the solutions on the set of initial
conditions and system parameters) of technical or natural processes: nuclear reactor performance,
meteorology and oceanography, biosphere development, etc., where one result depends on many
inputs.)

We see immediately that J and D commute, and if we rewrite the equation for J in its adjoint
form: J = I + JD, or

Jik = δik +
i∑

j=k+1

JijDjk , (8)
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we get for its last row the equation

xk = δNk +
N∑

j=k+1

xjDjk . (9)

We see that the reverse mode generates a very non-trivial modification of the program control
flow. The AD packages which operate in reverse mode, [14, 15] and many others, usually perform
an involved source-to-source transformation. This machinery may be heavy; the execution of
resulting program stores the intermediate expressions evaluated during the “forward sweep”, and
needed for the main computation, and for the evaluation of D, on a sequential (internal or external)
data structure nicknamed as the “tape”. After having computed the final value, the tape is read
backward, and the program reconstructs all the adjoints. This strategy may be dangerous: if
the program executes an iterative loop, each new re-assignment of an intermediate variable is
functionally equivalent to the creation of a new instance of it and of its adjoint. Even if the
variable is reused (i.e., in a functional, tail-recursive procedure: it is replaced by the new instance),
its adjoint, or rather their adjoints, cannot. Each instance generates a new adjoint statement, and
a new entry on the tape, which may become very long. The time “transmutes into space”. Many
essential optimisation strategies have been proposed, see e.g. [16, 17], but the automatization of
these techniques is not easy.

At any rate, if we consider the adjoints as entities which belong to the state of the system, we
see that this state propagates backwards with respect to the “natural” control flow of the program.
In view of the importance of the reverse differentiation techniques for the scientific community, we
observe that the remark of Philip Wadler in his paper [18], which will be exploited and commented
in the section 2.1: “To make this change in an impure language is left as an exercise for masochistic
readers”, might be considered a little too cruel. . . .

2 Doing It Functionally

Our ambition is to use some lazy functional techniques to make the life simpler for a casual, non-
masochist, scientifically oriented user, who would like to compute the adjoints in his program easily,
without passing through external pre/post-processing packages, and without having to introduce
manually some substantial modifications to his code. At the first glance, the problem doesn’t seem
too easy. We have not only a “perverse” control flow to implement, but we see that the adjoints
are computed incrementally; they gather additive contributions from each expression containing
the referred variable, and such constructs seem to be par excellence imperative.

2.1 ’State’ Monads in Haskell

The standard State Transformer monad, currently used to model some IO and other imperative
constructs is based on the lifting of all expressions of type a to the domain of “computations”
(\s -> (a,s)) , where s describes the type of the state. Every expression becomes a function
which acts on the current state, and produces a resulting value and a new state. A functional call
k(x) is replaced by the form m >>= k, where m is the lifted computation which delivers the value
x upon acting on some state. The function k acts on x and on a new state, and yields another
lifted object, like in the explicit definition below:
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m >>= k = \s_initial -> let (x, s_middle) = m s_initial
(y, s_final) = k x s_middle

in (y, s_final)

Philip Wadler in his article [18] demonstrated the possibility to define this monad in such a way
that the computation acts on the final state, and when the program delivers the final value, one
retrieves the initial state. The modification of the “bind” operator (>>=) is formally simple:

m >>= k = \s_final -> let (x, s_initial) = m s_middle
(y, s_middle) = k x s_final

in (y, s_initial)

but its meaning a bit less. The function k , which acts on the final state, and produces an inter-
mediate one needs the value provided by the computation mwhich acts on this intermediate state.
The data dependencies obey the “forward” time arrow, the two antithetic flows coexist, and it is
implementable only in a lazy language, since the two internal let clauses are mutually recursive.

Wadler remarks that this monad appeared while analysing the cross-referencing dependencies
during some intelligent text processing, but general applications of this monad seem to remain
unexploited. We leave the inverse kinematics and neural networks to some future work, and here
we propose to define the final state as the value of the adjoint of the final value, i.e., 1 (again, it
is simpler to present the one-dimensional case), and the initial state is the adjoint of the input
(differentiation) variable. When the program begins, we obviously have to inject into it this
variable and its adjoint. However, the adjoint is never really needed until the end of the program.
As already mentioned, our “time vehicle” belongs essentially to the same category of lazy tricks as
those presented in the article of Bird [13], and reformulated many times since.

2.2 Lazy time reversal, and associated data structures

We shall keep one global state, the value of the adjoint, which belongs (in one dimension) to the
same type as all other numerical expressions, say, a = Double . The corresponding monadic data
type would be a -> (a,a) , but we define a new datatype Ldif , since it is then easier to define
the overloaded operations for it. Its declaration, and the lifting of “constants” (explicit numeric
values, or expressions which do not depend actively on the input variable), and of the variable
itself go as follows:

newtype Ldif a = Ld (a->(a,a))

lCnst c = Ld (\z -> (c, 0.0))
lDvar x = Ld (\z -> (x, z))

While the Wadler’s monad is one of our sources of inspiration, and the composition of expressions
is essentially a monadic chaining, our ambition is to augment the semantics of a typical numerical
program without changing too much its form. A casual user should be able to write normal
arithmetic expression with standard operators and elementary function calls, and never see explicit
‘binds’. This means that the Ldif datatype will be an instance of the Numclass, and the standard
numeric conversion function, e.g. fromInteger may be specified as lCnst , which, with the aid
of the compiler simplifies the coding of a program containing explicit numeric constants.

The generic lifting of unary and binary functions follows the anti-causal monadic chaining
shown above. A function f acting on a numerical value is lifted into llift f f’ , where f’ is
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df
dx (x). A binary operator needs for its lifting two partial derivatives, denoted as f1’ and f2’ .
If there are no special shortcuts for particular operators, we use the generic forms applicable to
Ldif arguments:

cos=llift cos (negate.sin); log=llift log recip

etc., where

llift f f’ (Ld pp) =
Ld (\n->let (p,pb)= pp eb

eb = (f’ p)*n in (f p,pb))

dllift f f1’ f2’ (Ld pp) (Ld qq) =
Ld (\n->let (p,pb)=pp ep; (q,qb)=qq eq

ep=(f1’ p q)*n; eq =(f2’ p q)*n
in (f p q, pb+qb) )

However, standard numerical operations are optimised, and quite short, although they are not so
easy to grasp by an unprepared reader.

negate (Ld pp)=Ld (\n->let (p,pb)=pp (negate n)
in (negate p,pb))

(Ld pp)+(Ld qq) = Ld (\n ->
let (p,pb)=pp n; (q,qb)=qq n
in (p+q, pb+qb) )

(Ld pp)-(Ld qq) = Ld (\n ->
let (p,pb)=pp n; (q,qb)=qq (negate n)
in (p-q, pb+qb) )

(Ld pp)*(Ld qq) = Ld (\n ->
let (p,pb)=pp (n*q); (q,qb)=qq (p*n)
in (p*q, pb+qb) )

(Ld pp)/(Ld qq) = Ld (\n ->
let (p,pb)=pp (recip q*n); (q,qb)=qq eq

eq =negate (p/(q*q))*n
in (p/q, pb+qb) )

recip (Ld pp) = Ld (\n ->
let (p,pb)=pp eb; w=recip p

eb=negate (w*w)*n in (w,pb))
exp (Ld pp) = Ld (\n ->

let (p,pb)=pp (w*n); w=exp p in (w,pb))
sqrt (Ld pp) = Ld (\n ->

let (p,pb)=pp eb; w=sqrt p
eb=(0.5/w)*n in (w,pb))

etc. Notice that the summing of the derivative members in the resulting tuples provides the
“imperative”, accumulating updates. In order to apply practically our techniques it suffices to
construct numerical functions which are sufficiently generic, and can be overloaded to the Ldif
domain, for example cosh z = let e=exp z in (e + recip e)/2 , and to apply them to,
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say, lDvar 1.3 . The result is a functional object which should be applied to 1.0 in order to give
the main value (the hyperbolic cosine) and the derivative (the hyperbolic sine), absolutely “for
free”.

Of course it is possible to compute second and higher derivatives with the presented techniques,
it suffices to define some objects belonging to the type Ldif (Ldif Double) , etc., and to extract
the appropriate final values. Such generalisation exploits the polymorphism of Haskell, and the
possibility to compose the types recursively; the recursive composition of AD techniques in standard
imperative languages are more difficult to implement, even if the language permits to overload the
arithmetic operations.

The package has been generalized to many dimensions, and we could compute with it not only
the gradients, but also the Hessians: ∂2xN/∂xi∂xk, but this generalisation is postponed to the
section 4.2.

3 Relation to Attribute Grammars

We have mentioned already that there is nothing really new in the presented strategy. The back-
ward propagation of a state is a phenomenon known for many years in the domain of compilation
(syntax-driven semantic analysis), and corresponds to the propagation of inherited attributes dur-
ing the bottom-up parsing. A syntactic rule:

E ::= E1 Op E2

drives the synthesis of the attributes of E, but it is also here that the inherited attributes of E1

and E2 are assigned. Within the top-down parsing strategy the non-terminal E becomes a parsing
function, and we might parameterise it by the inherited attributes of its RHS components. But
the ascending algorithm, which can be treated as a kind of symbolic but “natural” (from leaves
up to the root) construction of the parsing tree, gets into trouble, because while the evaluation
proceeds from the leaves upwards, the inherited attributes descend from the root.

This problem viewed from the perspective of lazy functional programming has been analysed
by Johnsson, [2]. If we denote by E S a synthesized attribute, e.g., the value of the expression E,
and by Ek I an inherited attribute (e.g., some contextual information, environments, etc.), then
the set of semantic decorations (assignments of the attributes) can be replaced by the creation
of one synthesized attribute E f which is a functional object defined by the following program
(assuming that each variable has two synthesized and one inherited attribute):

E f = λ E I →
let (E1 S1, E1 S2) = E1 f E1 I

(E2 S1, E2 S2) = E2 f E2 I
{. . . attribute definitions . . . }

in (E S1, E S2)
where we see that typically E S will depend on Ek S, and since Ek I depend on attributes of E,
the definitions are entangled. But this is more or less a kind of formula we apply, compare this
with our definition of dllift !

Johnsson exploits the lazy attribute grammar paradigm to re-derive with a suggestive simplicity
some circular programs discussed in the Bird’s paper [13], and notices that this grammatical
approach has been discovered ex post while trying to find a regular description of the lambda-lifting
module within the LML compiler. It is amusing to find out that the perverted ST monad suggests a
similar programming style, but even more amusing is the discovery that Fortran programmers may
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need it, and that they simulate this style already for many years, using very painful programming
tricks.

4 Variations

4.1 Optimization: forward chaining of “promises”

In our case both items of the final output: the main value and the adjoint, are deferred. But this is
necessary only for the adjoints, the main values can be constructed during the forward phase of the
process, and there is no need to clog the memory by postponed thunks. (Johnsson discusses also
similar optimizations possible in the treatment of attributes.) The modifications of the framework
are in major part straightforward. We introduce another datatype:

data Rdif a = Rd a (a->a)

where the first member of the Rd tuple is the main value of the expression, and the second is a
“promise”: a function which will yield the appropriate adjoint when the adjoint of the LHS (see
the eq. 5) is known and this function can be applied to it. We define such operations as

rCnst c = Rd c (\_->0.0)
rDvar x = Rd x id

rlift f f’ (Rd p pr) = Rd (f p) (\r->pr(r*f’ p))
-- ...

-- ... within instances of Num and its subclasses (a fragment):

negate (Rd e _) = Rd (negate e) (\r->(negate r))
(Rd p pr) + (Rd q qr)=Rd (p+q) (\r->pr(r)+qr(r))

(Rd p pr)*(Rd q qr)=Rd (p*q) (\r->pr(r*q)+qr(r*p))
recip (Rd p pr)=Rd w (\r->pr(negate r*w*w))

where w=recip p

sqrt (Rd e pr) = Rd w (\r->pr(0.5*r/w))
where w=sqrt e

cos = rlift cos (negate . sin)

etc., analogous to the corresponding functions on the Ldif domain, and inspired directly by them.
The usage of the augmented funtion is as simple as in the previous model, the final promise should
be applied to 1 in order to retrieve the adjoint of the input variable.

It turns out that the chain of promises is just a realization — particularly easy and transparent
for the user — of the notorious “tape”, which stores the information gathered through the forward
sweep, and which permits to execute the adjoint statements during the “time-reversed” phase. In
this model the laziness is not important, and the efficiency is improved considerably. In order
to prevent the creation of exorbitantly long promises, e.g., in case of long loops (say, in solving
differential equations), other optimisation must be considered, but this is a feature pertinent to
the reverse mode of AD in general, and is beyond the scope of this text.
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4.2 Multi-dimensional Case

For many input variables all adjoints will be kept together in one data structure, equivalent to a
list. We introduce:

newtype Adj a = Adj [a]

and we define a natural set of operations on it, such as the addition element by element (overloaded
as (+) ), and the multiplication by a scalar denoted by (*>) .

We have to specify the dimension nDim of the independent variable space (the number of
intermediate variables remains arbitrary). Our “computations” belong now to the type

newtype NLdif a = NLd (Adj a->(a,Adj a))

(In the lazy model; of course it can be easily repeated using “promises”.)The definitions of constants
and of variables become a little more complex. For each variable we must specify its index k e.g.
starting at zero. This is the lifting of the primitive values:

unitA n k c = -- produces [0,0,...,0,c,0,...,0]
Adj ((replicate k 0 ++ (c : replicate (n-k-1) 0)))

nlCnst c = NLd (\_->(c,Adj (replicate nDim 0)))
nlDvar k x = NLd (\(Adj z)->(x,unitA nDim k (z!!k)))

All other changes are rather cosmetic. An expression s*n where s is a scalar, and n – the adjoint
vector, is replaced by s*>n .

We construct our final result as an arbitrary expression containing the objects xk: xk =
nlDvar k some value .

In order to get its full gradient [x0, . . . , xM ] we apply the final promise to Adj [1,1, ...,1] ,
and we select the second element of the resulting pair. Obviously, if only one gradient component
is needed, there is no need to consider other independent variables as differentiation variables, they
may be constants, and the dimension of the adjoint space is reduced.

As it is, the model is not adequate for computing directly the higher-order derivatives in many
dimensions, the algorithms become very clumsy, although the difficulties are not fundamental. It
was trivial in one-dimensional case because the adjoint vector was a scalar belonging to the same
type as the main expression, and a result obtained from, say, z=f(lDvar (lDvar (lDvar
xxx))) contained the second and third derivatives of z . The reverse differentiation in general is
not well adapted to this sort of computation, and we share this difficulty with other reverse AD
packages. In general case the forward approach is cleaner, and if one wants to do it functionally
in a regular, geometric framework, we would suggest the techniques elaborated in our paper [19].

5 Conclusions

This paper belongs to a longer series of texts advocating the use of lazy functional methods in
the domain of scientific, mainly numeric and semi-numeric computing (geometry, power series
manipulation, etc.). The ambition of this paper is twofold.

• We wanted to show that the scientific programming realm needs sometimes complicated,
non-orthodox views on the essence of the computational processes, and that lazy functional
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paradigms offer a marvelous opportunity to treat some non-trivial problems in a nice, read-
able way. We tried to develop some concrete, and useful examples which are much more
difficult to implement using standard imperative methods, especially when the path between
a mathematical formula and a computer program passes through the necessity of disentan-
gling some recurrent, implicit definitions.

• We wanted to signal that some of that issues exist in many areas under different disguises, and
that the universality of functional programming helps to find their common denominators.

Technically-oriented programmers begin slowly to discover the advantages of lazy programming in a
context where it enables the transforming — often automatic — of a fixed-point equation x = f(x)
into an effective algorithm, if x belongs to some co-recursively defined domain, e.g. a power series,
or other expression resulting from a perturbational expansion which is often formulated as an open,
co-recursive equation (see e.g. our article [20] which shows how to apply laziness to a classical, but
nasty computational problem in Quantum Mechanics).

We see that the applicability of lazy techniques is larger than that, being able not only to deal
with entangled data dependencies, but also with some non-classical control flows. Of course, there
is nothing intrinsically numeric in the code organization, and we think that non-strict semantics
may considerably augment the power of the Computer Algebra packages, provided that the CA
implementors liberate themselves one day from the imperative tradition.

The source code of our package is available from our Web page:
www.users.info.unicaen.fr\~karczma\Work\adjdif.hs . It has been tested with GHCi,
version 5.04. This is not an industrial-strength package, but rather a pedagogical essay, and it will
not be very efficient in a complex, professional context, because of considerable memory consump-
tion. A thorough analysis of the complexity of our approach, and many serious optimizations (such
as periodic reduction of the accumulated lazy thunks) remain to be done.

Above all, this kind of coding may be really enjoyable in a field which is usually a little boring,
and where the algorithmization process is extremely costly in human resources.
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