The Most Unreliable Technique in the World
to compute 7

Jerzy Karczmarczuk
Dept. of Computer Science, University of Caen, France

(mailto:karczma@info.unicaen.fr)

Abstract

This paper is an atypical exercice in lazy functional coding, written
for fun and instruction. It can be read and understood by anybody
who understands the programming language Haskell. We show how to
implement the Bailey-Borwein-Plouffe formula for 7 in a co-recursive,
incremental way which produces the digits 3, 1, 4, 1, 5, 9... until the
memory exhaustion. This is not a way to proceed if somebody needs
many digits! Our coding strategy is perverse and dangerous, and it
provably breaks down. It is based on the arithmetics over the domain
of infinite sequences of digits representing proper fractions expanded
in an integer base. We show how to manipulate: add, multiply by an
integer, etc. such sequences from the left to the right ad infinitum,
which obviously cannot work in all cases because of ambiguities. Some
deep philosophical consequences are discussed in the conclusions.

1 Introduction

We all know that the world oceans are saturated by algorithms to compute
m. These algorithms have accumulated over centuries, and it is difficult to
become famous by just computing another billion digits of this transcendental
number, despite the fact that the Humanity badly needs those digits. The
reader will find almost all the relevant and irrelevant information about 7 on
the Web: [1]. Why almost? Because the topic is so vital that many people
still work hard on it, day and night. The glorious times of William Shanks,
who computed many digits of 7 by hand in 1853 (and spent ten years on
finding erroneous digits which followed a mistake infiltrated somehow into the
sequence. ..) are not over. Last year Fabrice Bellard [2] found the billionth

(european, 10'?) binary digit of 7 employing a modified Bailey-Borwein-
Plouffe formula [3], accelerated by him by the whole 43%, and the world did
not freeze in astonishment.

Seriously, the pleasure of searching is much more important than the
result itself, and the future belongs perhaps to those who will invent the
most unusual, baroque and expensive ways to compute 7 or other magic
numbers. Perhaps new experimental methods? The book [4] quotes the
experiment (published on Usenet lists) of Dave Boll, who analyzed the struc-
ture of filaments on the border of the Mandelbrot fractal set (the “bug”) at
¢ = —0.75 + €i, and found that the number of iterations needed to leave the
“neck” is equal to m//€, which generated such numbers as 3141592 when
¢ was an even power of 107!, The folklore of m continues. But the BBP
formula itself is really remarkable both from the theoretical point of view,
and for eventual applications. It is based on some special identities fulfilled
by certain polylogarithmic functions [3]. The authors are known specialists
in constructive mathematics. Their formula is a development in powers of
1/16:

= 1/ 4 2 1 1
-3 - - - . 1
" §161<8i+1 8i+4 8i+5 8i+6> @

Each coefficient is rational, and its contribution for the distant digits may
be estimated. It is possible thus to compute any hexadecimal (or binary)
digit of m without infinite-precision arithmetic, nor large amount of memory,
because previous digits are not needed. Of course, converting the result into
decimal is another story. Now the entire sequence of digits is involved.

Our ambition does not go into the direction of computing new digits of 7.
We want just to show on an amusing example that the lazy semantics provides
some new coding techniques, which might be useful, at least pedagogically,
and for the brave people in the domain of scientific computing. In a sense
this paper is a conceptual continuation of [5]. The authors of [3] used the
standard floating-point arithmetic to construct the numerical result. Our
coding is purely integer, and it may be coded even using standard short
Ints, but then one has to be very careful.

2 Lazy Arithmetic of Infinite Fractions

Everybody agrees that representing 2/7 by 0.285714285714. .. is the worst
possible solution for practical computations. It must be truncated, and all
numerical manipulations of floating-point numbers introduce errors. If the
mantissa is long, the errors are smaller, but the computation takes longer.
All truncation is awkward anyway, in all computations as in real life. We

propose thus to represent such fraction as above by a lazy infinite list, for
example:

twosevenths=0 : cycle [2,8,5,7,1,4]

This is just a particular case. Even simpler is the “lifting” of zero: sZero
= repeat 0. We shall keep the entire part of the number as the first digit
of the list without expanding it further, and we can generate other numbers
by appropriate lazy algorithms. Choosing an integer base (10 for testing,
and 16 for our final BBP computation), we can easily convert any rational
fraction into our domain by the standard Euclidean chain:

fcn n d = let (a,b)=quotRem n d in a : fcn (basexb) d

which has nothing unusual, it is a perfectly legitimate co-recursive procedure,
guaranteed to progress, and its incremental consumption is absolutely sane
and safe, see [6]. The call fcn 5 3 generates the list [1,6,6,6,...]. But
can we do something with such fractions? Adding element by element the
expansions of 2/7 and 5/7=0.71428571... gives 0.9999999... which is the
most silly way to represent 1, but it coexists with 1.000... as a different
piece of data.

However, if we avoid such cases, i.e. if we admit that our arithmetic is
inherently sick and incomplete (like standard floating-point arithmetic for a
True Mathematician), we may construct the addition of these infinite frac-
tions. The carry propagation is resolved by lookahead, and the main trick
consists in combining the lazy and strict recursion. First we add everything
element-wise, and then we propagate the carry from the unknown future by
almost trivial, deterministic guessing. This propagation breaks down, and
forces another level of strict recursion when we encounter the digit 9 (base-1
in general case).

u <+> v = let (wO:wq)=zipWith (+) u v in cpr w0 wq where
cpr u0 (ul:ug)| ul<basel = u0 : cpr ul uq
| uil>basel (u0+1) : cpr (ul-base) uq
| otherwise = let v@(v0:vqg)=cpr ul uq in
if vO<base then u0:v else (u0+1):(vO-base):vq

The subtraction is straightforward, in order to negate a number we permit
the 0-th element to be negative, and the fractional part is 9-complemented

neg (u0:uq) = (negate u0 - 1) : map (basel -) uq

Of course it is better not to try to subtract a number from itself, as this
particular way of computing zero is quite expensive, it generates bottom: —1+
0.9999.... We don’t discuss further the manipulation of negative numbers.
For example their division by something may be performed by negating it,
dividing, and negating again.

We might need the multiplication and the division of an expanded number
by a digit m. The division (u >/ m) is simpler, and it is co-recursively sane.

u@(uld:_) >/ m

= dvd 0 u where
dvd ¢ (u0:uq) =

let (n,r) = quotRem (base*c+ul) m
inn : dvd r uq

The multiplication (m *> u) is again a horrendum. Multiplying 1/3 by 3
will not work, and if we want to be able to compute 5 -1/3, it is better to
avoid the construction of the multiplication as the iterated addition. The
multiplication procedure is the longest piece of our code:

0 *> u = sZero
1 x> u=nu
m *> u@(ul:ul:uq) =
let (c,r)=quotRem (m*(uO*base+ul)) base
cm ¢ r (vO:vq) =
let (a,b)=quotRem (m*v0) base; p=at+r
in if p<basel then c : cm p b vq else
if p>basel then (c+1) : cm (p-base) b vq
else let w@(wO:wq) = cm p b vq
in if wO<base then c¢ : w else (c+1) : 0 : wq
in cm ¢ r uq

Again, we construct a tentative digit, summing the contribution of two neigh-
bouring digits of the fraction u, and an eventual correction from the unknown
future may consist only in adding 1. This is safe if the concerned digit is
different from base-1, because in this case the previous digit is frozen. Now
we can convert the expanded fractions from one base to another, and this is
our main contribution to the BBP algorithm, admittedly neither too original
nor laborious. Here it is, the old base is the global base, and the new one is
passed as the second parameter.

bconv (u0:uq) nBase = u0 : bconv (nBase *> (0:uq)) nBase

This conversion from the base 16 into 10 will fail if the number of consecutive
“9” is bigger than the size of the computer recursive stack. Of course m must
include such sequence, and our algorithm must break down, but it might also

4

die earlier and happier, because of the accumulation of lazy thunks within
the main heap. (This did not happen in our experiments, we tried to avoid
spurious memory leaks in forming the lazy fractions.)

3 The Main Computation

We may implement now the formula (1). We can either sum the rational
fractions and convert the sum into our lazy expansion:

frm i = let j=8%i
(a :% b)=4%(j+1)-2%(j+4)-1%(j+5)-1%(j+6)
in fcn a b

or sum the four expansions separately. Both methods have their advan-
tages. The first one produces less lazy lists in the storage, but needs the
long Integer numbers, the Int datatype on some platforms (for example
the Hugs 1.4 implementation unders Windows NT) fails, because the ratio-
nal sum above creates quickly very voluminous rationals. The second one is
slower, but safer from this point of view. However, here the user should treat
separately the 0O-th term, otherwise the program will immediately squeak
and die, producing bottom by subtraction 4 — 1/2. This is relatively easy to
correct, but we shall not insist upon it.

And that is almost all, but how do we compute the infinite sum in (1)?
In fact this is a shifted sum: U® + UM /B + U® /B? + ... where B is the
base (16). We construct first a list of terms: [U®, UM U@ UG], where
each term U®) represents the coefficient in the BBP formula. The addition
f+g/B+ X/B?is “almost” easy, it first digit needs only the first digit of f,
and eventually the carry propagated from g, if its first digit is too big. We
exploit the same look-ahead trick already seen in normal addition, and we
code

pil6 = ssum (map frm [0 ..]) where
ssum (u@(ul:ul:uq) : v@(v0:_) : r) =
if ul+vO<basel then u0 : ssum ((ul:ug)<+>v : r)
else let s = ssum (v:r) in u <+> (0:s)

ourpi=bconv pil6 10

And now, unbelievable, but true, it suffices to type ourpi, and to start
writing this article. Before it is finished we get on the screen

[31415926535897932384626433832795028841971693993751058209749
445923078164062862089986280348253421170679821480865132823066
470938446095505822317253594081284811174502841027019385211055
596446229489549303819644288109756659334461284756482337867831
652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903
600113305305488204665213841469519415116094330572703657595919
530921861173819326117931051185480744623799627495673518857527
248912279381830119491298336733624406566430860213949463952247
371907021798609437027705392171762931767523846748184676694051
320005681271452635608277857713427577896091736371787214684409
012249534301465495853710507922796892589235420199561121290219
608640344181598136297747713099605187072113499999983729780499
510597317328160963185950244594553469083026425223082533446850
352619311881710100031378387528865875332083814206171776691473
035982534904287554687311595628638823537875937519577818577805
321712268066130019278766111959092164201989380952572010654858
632788659361533818279682303019520353018529689957736225994138
912497217752834791315155748572424541506959508295331168617278
558890750983817546374649393192550604009277016711390098488240
1285836160356370766010471018194295559619894676783744 ...]

where we have reformatted a little the output, which was actually longer,
in fact we gave up after having generated 1800 digits. We have checked the
result, which was almost redundant, as the program is so trivial that we
had no chance to commit an error, but a similar computation in the past
discovered an error in one rational number package. ..

4 Conclusions

Our main conclusion is that the program works, although it needn’t to, and
after a finite number of steps it will fail. In fact, this is the only such program
which works without knowing how many digits it should generate, if at all.
In such a way we prove that we have done a serious work. A mathematically-
oriented reader whose private definition of the word “serious” is different from
ours, may reject our technique, and our only defense is that this technique is
not ours. .. All the financial aid demanded by the governments of the Third
World is based on the principle of borrowing money without any guarantee
to pay it back one day. In practice this works, because the bank buffers of
the rich countries are voluminous enough. The very idea of a bank credit is a
lazy co-recursive (runaway) algorithm, and the true Game consists in running

6

away before the bottom reaches you. The social security depenses in several
european countries operate on non-existing funds which will (hopefully) un-
virtualize themselves thanks to the work of future generations. Yes, the
economy is a non-strict science. So, why should we hesitate to borrow a
carry from the “future” digits? At least this is our free choice, while paying
taxes is not.

The idea might be much more fundamental than that. From the relativis-
tic cosmology we know that the negative gravitational energy almost entirely
compensates the energy stored in the matter. Thus, apparently the Big Bang
is based on a lazy quantum algorithm, borrowing energy from the dynamic of
the future unrolling Universe in order to construct it, and compensating the
budget by the gravitational tension. The Almighty obviously preferred the
functional programming over the imperative one, but that we knew already
for years, the first Light in the Universe is a let construct.

This paper has been written for sheer intellectual pleasure, and it will re-
main unpublished in the Virtual Journal of Unpublished Papers. Publishing
everything makes it impossible to discover the Truth in the literature, and
thus it serves the Devil. The author thanks his family for their constant
emotional support and aspirin.

References

[1] Everything you ever wanted to know about 7, and much more:
http://www.cecm.sfu.ca/pi or
www.go2net.com/internet/useless/useless/pi/pi-pages.html

[2] The Web site of Fabrice Bellard:
http://www-stud.enst.fr/“bellard/pi-challenge/index.html

[3] David Bailey, Peter Borwein, Simon Plouffe, On the Rapid Computations
of Various Polylogarithmic Constants, Math. Comp. 66 (1997), pp. 903—
913.

[4] H.-0. Peitgen, H. Jiirgens, D. Saupe, Fractals for the Classroom. Part 2:
Complex Systems and Mandelbrot Set, Springer, N. Y., (1992).

[5] Jerzy Karczmarczuk, Generating Power of Lazy Semantics, Theoretical
Computer Science 187, (1997), pp. 203-219.

[6] David A. Turner, Elementary Strong Functional Programming, Proceed-
ings of the Symposium Functional Programming Languages in Educa-
tion, FPLE’95, Nijmegen; Springer, LNCS 1022, (1995), pp. 1-13.

7

