
The Most Unreliable Tehnique in the Worldto ompute �Jerzy KarzmarzukDept. of Computer Siene, University of Caen, Frane(mailto:karzma�info.uniaen.fr)AbstratThis paper is an atypial exerie in lazy funtional oding, writtenfor fun and instrution. It an be read and understood by anybodywho understands the programming language Haskell. We show how toimplement the Bailey-Borwein-Plou�e formula for � in a o-reursive,inremental way whih produes the digits 3, 1, 4, 1, 5, 9. . . until thememory exhaustion. This is not a way to proeed if somebody needsmany digits! Our oding strategy is perverse and dangerous, and itprovably breaks down. It is based on the arithmetis over the domainof in�nite sequenes of digits representing proper frations expandedin an integer base. We show how to manipulate: add, multiply by aninteger, et. suh sequenes from the left to the right ad in�nitum,whih obviously annot work in all ases beause of ambiguities. Somedeep philosophial onsequenes are disussed in the onlusions.1 IntrodutionWe all know that the world oeans are saturated by algorithms to ompute�. These algorithms have aumulated over enturies, and it is diÆult tobeome famous by just omputing another billion digits of this transendentalnumber, despite the fat that the Humanity badly needs those digits. Thereader will �nd almost all the relevant and irrelevant information about � onthe Web: [1℄. Why almost? Beause the topi is so vital that many peoplestill work hard on it, day and night. The glorious times of William Shanks,who omputed many digits of � by hand in 1853 (and spent ten years on�nding erroneous digits whih followed a mistake in�ltrated somehow into thesequene. . . ) are not over. Last year Fabrie Bellard [2℄ found the billionth1



(european, 1012) binary digit of � employing a modi�ed Bailey-Borwein-Plou�e formula [3℄, aelerated by him by the whole 43%, and the world didnot freeze in astonishment.Seriously, the pleasure of searhing is muh more important than theresult itself, and the future belongs perhaps to those who will invent themost unusual, baroque and expensive ways to ompute � or other maginumbers. Perhaps new experimental methods? The book [4℄ quotes theexperiment (published on Usenet lists) of Dave Boll, who analyzed the stru-ture of �laments on the border of the Mandelbrot fratal set (the \bug") at = �0:75 + �i, and found that the number of iterations needed to leave the\nek" is equal to �=p�, whih generated suh numbers as 3141592 when� was an even power of 10�1. The folklore of � ontinues. But the BBPformula itself is really remarkable both from the theoretial point of view,and for eventual appliations. It is based on some speial identities ful�lledby ertain polylogarithmi funtions [3℄. The authors are known speialistsin onstrutive mathematis. Their formula is a development in powers of1/16: � = 1Xi=0 116i � 48i+ 1 � 28i + 4 � 18i+ 5 � 18i+ 6�: (1)Eah oeÆient is rational, and its ontribution for the distant digits maybe estimated. It is possible thus to ompute any hexadeimal (or binary)digit of � without in�nite-preision arithmeti, nor large amount of memory,beause previous digits are not needed. Of ourse, onverting the result intodeimal is another story. Now the entire sequene of digits is involved.Our ambition does not go into the diretion of omputing new digits of �.We want just to show on an amusing example that the lazy semantis providessome new oding tehniques, whih might be useful, at least pedagogially,and for the brave people in the domain of sienti� omputing. In a sensethis paper is a oneptual ontinuation of [5℄. The authors of [3℄ used thestandard oating-point arithmeti to onstrut the numerial result. Ouroding is purely integer, and it may be oded even using standard shortInts, but then one has to be very areful.2 Lazy Arithmeti of In�nite FrationsEverybody agrees that representing 2/7 by 0.285714285714. . . is the worstpossible solution for pratial omputations. It must be trunated, and allnumerial manipulations of oating-point numbers introdue errors. If themantissa is long, the errors are smaller, but the omputation takes longer.All trunation is awkward anyway, in all omputations as in real life. We2



propose thus to represent suh fration as above by a lazy in�nite list, forexample:twosevenths=0 : yle [2,8,5,7,1,4℄This is just a partiular ase. Even simpler is the \lifting" of zero: sZero= repeat 0. We shall keep the entire part of the number as the �rst digitof the list without expanding it further, and we an generate other numbersby appropriate lazy algorithms. Choosing an integer base (10 for testing,and 16 for our �nal BBP omputation), we an easily onvert any rationalfration into our domain by the standard Eulidean hain:fn n d = let (a,b)=quotRem n d in a : fn (base*b) dwhih has nothing unusual, it is a perfetly legitimate o-reursive proedure,guaranteed to progress, and its inremental onsumption is absolutely saneand safe, see [6℄. The all fn 5 3 generates the list [1; 6; 6; 6; : : : ℄. Butan we do something with suh frations? Adding element by element theexpansions of 2/7 and 5/7=0.71428571. . . gives 0.9999999. . . whih is themost silly way to represent 1, but it oexists with 1.000. . . as a di�erentpiee of data.However, if we avoid suh ases, i.e. if we admit that our arithmeti isinherently sik and inomplete (like standard oating-point arithmeti for aTrue Mathematiian), we may onstrut the addition of these in�nite fra-tions. The arry propagation is resolved by lookahead, and the main trikonsists in ombining the lazy and strit reursion. First we add everythingelement-wise, and then we propagate the arry from the unknown future byalmost trivial, deterministi guessing. This propagation breaks down, andfores another level of strit reursion when we enounter the digit 9 (base-1in general ase).u <+> v = let (w0:wq)=zipWith (+) u v in pr w0 wq wherepr u0 (u1:uq)| u1<base1 = u0 : pr u1 uq| u1>base1 = (u0+1) : pr (u1-base) uq| otherwise = let v�(v0:vq)=pr u1 uq inif v0<base then u0:v else (u0+1):(v0-base):vqThe subtration is straightforward, in order to negate a number we permitthe 0-th element to be negative, and the frational part is 9-omplementedneg (u0:uq) = (negate u0 - 1) : map (base1 -) uq
3



Of ourse it is better not to try to subtrat a number from itself, as thispartiular way of omputing zero is quite expensive, it generates bottom: �1+0:9999 : : : . We don't disuss further the manipulation of negative numbers.For example their division by something may be performed by negating it,dividing, and negating again.We might need the multipliation and the division of an expanded numberby a digit m. The division (u >/ m) is simpler, and it is o-reursively sane.u�(u0:_) >/ m = dvd 0 u wheredvd  (u0:uq) = let (n,r) = quotRem (base*+u0) min n : dvd r uqThe multipliation (m *> u) is again a horrendum. Multiplying 1/3 by 3will not work, and if we want to be able to ompute 5 � 1=3, it is better toavoid the onstrution of the multipliation as the iterated addition. Themultipliation proedure is the longest piee of our ode:0 *> u = sZero1 *> u = um *> u�(u0:u1:uq) =let (,r)=quotRem (m*(u0*base+u1)) basem  r (v0:vq) =let (a,b)=quotRem (m*v0) base; p=a+rin if p<base1 then  : m p b vq elseif p>base1 then (+1) : m (p-base) b vqelse let w�(w0:wq) = m p b vqin if w0<base then  : w else (+1) : 0 : wqin m  r uqAgain, we onstrut a tentative digit, summing the ontribution of two neigh-bouring digits of the fration u, and an eventual orretion from the unknownfuture may onsist only in adding 1. This is safe if the onerned digit isdi�erent from base-1, beause in this ase the previous digit is frozen. Nowwe an onvert the expanded frations from one base to another, and this isour main ontribution to the BBP algorithm, admittedly neither too originalnor laborious. Here it is, the old base is the global base, and the new one ispassed as the seond parameter.bonv (u0:uq) nBase = u0 : bonv (nBase *> (0:uq)) nBaseThis onversion from the base 16 into 10 will fail if the number of onseutive\9" is bigger than the size of the omputer reursive stak. Of ourse � mustinlude suh sequene, and our algorithmmust break down, but it might also4



die earlier and happier, beause of the aumulation of lazy thunks withinthe main heap. (This did not happen in our experiments, we tried to avoidspurious memory leaks in forming the lazy frations.)3 The Main ComputationWe may implement now the formula (1). We an either sum the rationalfrations and onvert the sum into our lazy expansion:frm i = let j=8*i(a :% b)=4%(j+1)-2%(j+4)-1%(j+5)-1%(j+6)in fn a bor sum the four expansions separately. Both methods have their advan-tages. The �rst one produes less lazy lists in the storage, but needs thelong Integer numbers, the Int datatype on some platforms (for examplethe Hugs 1.4 implementation unders Windows NT) fails, beause the ratio-nal sum above reates quikly very voluminous rationals. The seond one isslower, but safer from this point of view. However, here the user should treatseparately the 0-th term, otherwise the program will immediately squeakand die, produing bottom by subtration 4� 1=2. This is relatively easy toorret, but we shall not insist upon it.And that is almost all, but how do we ompute the in�nite sum in (1)?In fat this is a shifted sum: U (0) + U (1)=B + U (2)=B2 + � � � where B is thebase (16). We onstrut �rst a list of terms: [U (0); U (1); U (2); U (3); : : : ℄, whereeah term U (k) represents the oeÆient in the BBP formula. The additionf + g=B+X=B2 is \almost" easy, it �rst digit needs only the �rst digit of f ,and eventually the arry propagated from g, if its �rst digit is too big. Weexploit the same look-ahead trik already seen in normal addition, and weodepi16 = ssum (map frm [0 ..℄) wheressum (u�(u0:u1:uq) : v�(v0:_) : r) =if u1+v0<base1 then u0 : ssum ((u1:uq)<+>v : r)else let s = ssum (v:r) in u <+> (0:s)ourpi=bonv pi16 10And now, unbelievable, but true, it suÆes to type ourpi, and to startwriting this artile. Before it is �nished we get on the sreen5



[314159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744... ℄where we have reformatted a little the output, whih was atually longer,in fat we gave up after having generated 1800 digits. We have heked theresult, whih was almost redundant, as the program is so trivial that wehad no hane to ommit an error, but a similar omputation in the pastdisovered an error in one rational number pakage. . .4 ConlusionsOur main onlusion is that the program works, although it needn't to, andafter a �nite number of steps it will fail. In fat, this is the only suh programwhih works without knowing how many digits it should generate, if at all.In suh a way we prove that we have done a serious work. A mathematially-oriented reader whose private de�nition of the word \serious" is di�erent fromours, may rejet our tehnique, and our only defense is that this tehnique isnot ours. . . All the �nanial aid demanded by the governments of the ThirdWorld is based on the priniple of borrowing money without any guaranteeto pay it bak one day. In pratie this works, beause the bank bu�ers ofthe rih ountries are voluminous enough. The very idea of a bank redit is alazy o-reursive (runaway) algorithm, and the true Game onsists in running6



away before the bottom reahes you. The soial seurity depenses in severaleuropean ountries operate on non-existing funds whih will (hopefully) un-virtualize themselves thanks to the work of future generations. Yes, theeonomy is a non-strit siene. So, why should we hesitate to borrow aarry from the \future" digits? At least this is our free hoie, while payingtaxes is not.The idea might be muh more fundamental than that. From the relativis-ti osmology we know that the negative gravitational energy almost entirelyompensates the energy stored in the matter. Thus, apparently the Big Bangis based on a lazy quantum algorithm, borrowing energy from the dynami ofthe future unrolling Universe in order to onstrut it, and ompensating thebudget by the gravitational tension. The Almighty obviously preferred thefuntional programming over the imperative one, but that we knew alreadyfor years, the �rst Light in the Universe is a let onstrut.This paper has been written for sheer intelletual pleasure, and it will re-main unpublished in the Virtual Journal of Unpublished Papers. Publishingeverything makes it impossible to disover the Truth in the literature, andthus it serves the Devil. The author thanks his family for their onstantemotional support and aspirin.Referenes[1℄ Everything you ever wanted to know about �, and muh more:http://www.em.sfu.a/pi orwww.go2net.om/internet/useless/useless/pi/pi-pages.html[2℄ The Web site of Fabrie Bellard:http://www-stud.enst.fr/~bellard/pi-hallenge/index.html[3℄ David Bailey, Peter Borwein, Simon Plou�e, On the Rapid Computationsof Various Polylogarithmi Constants, Math. Comp. 66 (1997), pp. 903{913.[4℄ H.-0. Peitgen, H. J�urgens, D. Saupe, Fratals for the Classroom. Part 2:Complex Systems and Mandelbrot Set, Springer, N. Y., (1992).[5℄ Jerzy Karzmarzuk, Generating Power of Lazy Semantis, TheoretialComputer Siene 187, (1997), pp. 203{219.[6℄ David A. Turner, Elementary Strong Funtional Programming, Proeed-ings of the Symposium Funtional Programming Languages in Edua-tion, FPLE'95, Nijmegen; Springer, LNCS 1022, (1995), pp. 1{13.7


