
The Most Unreliable Te
hnique in the Worldto 
ompute �Jerzy Kar
zmar
zukDept. of Computer S
ien
e, University of Caen, Fran
e(mailto:kar
zma�info.uni
aen.fr)Abstra
tThis paper is an atypi
al exer
i
e in lazy fun
tional 
oding, writtenfor fun and instru
tion. It 
an be read and understood by anybodywho understands the programming language Haskell. We show how toimplement the Bailey-Borwein-Plou�e formula for � in a 
o-re
ursive,in
remental way whi
h produ
es the digits 3, 1, 4, 1, 5, 9. . . until thememory exhaustion. This is not a way to pro
eed if somebody needsmany digits! Our 
oding strategy is perverse and dangerous, and itprovably breaks down. It is based on the arithmeti
s over the domainof in�nite sequen
es of digits representing proper fra
tions expandedin an integer base. We show how to manipulate: add, multiply by aninteger, et
. su
h sequen
es from the left to the right ad in�nitum,whi
h obviously 
annot work in all 
ases be
ause of ambiguities. Somedeep philosophi
al 
onsequen
es are dis
ussed in the 
on
lusions.1 Introdu
tionWe all know that the world o
eans are saturated by algorithms to 
ompute�. These algorithms have a

umulated over 
enturies, and it is diÆ
ult tobe
ome famous by just 
omputing another billion digits of this trans
endentalnumber, despite the fa
t that the Humanity badly needs those digits. Thereader will �nd almost all the relevant and irrelevant information about � onthe Web: [1℄. Why almost? Be
ause the topi
 is so vital that many peoplestill work hard on it, day and night. The glorious times of William Shanks,who 
omputed many digits of � by hand in 1853 (and spent ten years on�nding erroneous digits whi
h followed a mistake in�ltrated somehow into thesequen
e. . . ) are not over. Last year Fabri
e Bellard [2℄ found the billionth1



(european, 1012) binary digit of � employing a modi�ed Bailey-Borwein-Plou�e formula [3℄, a

elerated by him by the whole 43%, and the world didnot freeze in astonishment.Seriously, the pleasure of sear
hing is mu
h more important than theresult itself, and the future belongs perhaps to those who will invent themost unusual, baroque and expensive ways to 
ompute � or other magi
numbers. Perhaps new experimental methods? The book [4℄ quotes theexperiment (published on Usenet lists) of Dave Boll, who analyzed the stru
-ture of �laments on the border of the Mandelbrot fra
tal set (the \bug") at
 = �0:75 + �i, and found that the number of iterations needed to leave the\ne
k" is equal to �=p�, whi
h generated su
h numbers as 3141592 when� was an even power of 10�1. The folklore of � 
ontinues. But the BBPformula itself is really remarkable both from the theoreti
al point of view,and for eventual appli
ations. It is based on some spe
ial identities ful�lledby 
ertain polylogarithmi
 fun
tions [3℄. The authors are known spe
ialistsin 
onstru
tive mathemati
s. Their formula is a development in powers of1/16: � = 1Xi=0 116i � 48i+ 1 � 28i + 4 � 18i+ 5 � 18i+ 6�: (1)Ea
h 
oeÆ
ient is rational, and its 
ontribution for the distant digits maybe estimated. It is possible thus to 
ompute any hexade
imal (or binary)digit of � without in�nite-pre
ision arithmeti
, nor large amount of memory,be
ause previous digits are not needed. Of 
ourse, 
onverting the result intode
imal is another story. Now the entire sequen
e of digits is involved.Our ambition does not go into the dire
tion of 
omputing new digits of �.We want just to show on an amusing example that the lazy semanti
s providessome new 
oding te
hniques, whi
h might be useful, at least pedagogi
ally,and for the brave people in the domain of s
ienti�
 
omputing. In a sensethis paper is a 
on
eptual 
ontinuation of [5℄. The authors of [3℄ used thestandard 
oating-point arithmeti
 to 
onstru
t the numeri
al result. Our
oding is purely integer, and it may be 
oded even using standard shortInts, but then one has to be very 
areful.2 Lazy Arithmeti
 of In�nite Fra
tionsEverybody agrees that representing 2/7 by 0.285714285714. . . is the worstpossible solution for pra
ti
al 
omputations. It must be trun
ated, and allnumeri
al manipulations of 
oating-point numbers introdu
e errors. If themantissa is long, the errors are smaller, but the 
omputation takes longer.All trun
ation is awkward anyway, in all 
omputations as in real life. We2



propose thus to represent su
h fra
tion as above by a lazy in�nite list, forexample:twosevenths=0 : 
y
le [2,8,5,7,1,4℄This is just a parti
ular 
ase. Even simpler is the \lifting" of zero: sZero= repeat 0. We shall keep the entire part of the number as the �rst digitof the list without expanding it further, and we 
an generate other numbersby appropriate lazy algorithms. Choosing an integer base (10 for testing,and 16 for our �nal BBP 
omputation), we 
an easily 
onvert any rationalfra
tion into our domain by the standard Eu
lidean 
hain:f
n n d = let (a,b)=quotRem n d in a : f
n (base*b) dwhi
h has nothing unusual, it is a perfe
tly legitimate 
o-re
ursive pro
edure,guaranteed to progress, and its in
remental 
onsumption is absolutely saneand safe, see [6℄. The 
all f
n 5 3 generates the list [1; 6; 6; 6; : : : ℄. But
an we do something with su
h fra
tions? Adding element by element theexpansions of 2/7 and 5/7=0.71428571. . . gives 0.9999999. . . whi
h is themost silly way to represent 1, but it 
oexists with 1.000. . . as a di�erentpie
e of data.However, if we avoid su
h 
ases, i.e. if we admit that our arithmeti
 isinherently si
k and in
omplete (like standard 
oating-point arithmeti
 for aTrue Mathemati
ian), we may 
onstru
t the addition of these in�nite fra
-tions. The 
arry propagation is resolved by lookahead, and the main tri
k
onsists in 
ombining the lazy and stri
t re
ursion. First we add everythingelement-wise, and then we propagate the 
arry from the unknown future byalmost trivial, deterministi
 guessing. This propagation breaks down, andfor
es another level of stri
t re
ursion when we en
ounter the digit 9 (base-1in general 
ase).u <+> v = let (w0:wq)=zipWith (+) u v in 
pr w0 wq where
pr u0 (u1:uq)| u1<base1 = u0 : 
pr u1 uq| u1>base1 = (u0+1) : 
pr (u1-base) uq| otherwise = let v�(v0:vq)=
pr u1 uq inif v0<base then u0:v else (u0+1):(v0-base):vqThe subtra
tion is straightforward, in order to negate a number we permitthe 0-th element to be negative, and the fra
tional part is 9-
omplementedneg (u0:uq) = (negate u0 - 1) : map (base1 -) uq
3



Of 
ourse it is better not to try to subtra
t a number from itself, as thisparti
ular way of 
omputing zero is quite expensive, it generates bottom: �1+0:9999 : : : . We don't dis
uss further the manipulation of negative numbers.For example their division by something may be performed by negating it,dividing, and negating again.We might need the multipli
ation and the division of an expanded numberby a digit m. The division (u >/ m) is simpler, and it is 
o-re
ursively sane.u�(u0:_) >/ m = dvd 0 u wheredvd 
 (u0:uq) = let (n,r) = quotRem (base*
+u0) min n : dvd r uqThe multipli
ation (m *> u) is again a horrendum. Multiplying 1/3 by 3will not work, and if we want to be able to 
ompute 5 � 1=3, it is better toavoid the 
onstru
tion of the multipli
ation as the iterated addition. Themultipli
ation pro
edure is the longest pie
e of our 
ode:0 *> u = sZero1 *> u = um *> u�(u0:u1:uq) =let (
,r)=quotRem (m*(u0*base+u1)) base
m 
 r (v0:vq) =let (a,b)=quotRem (m*v0) base; p=a+rin if p<base1 then 
 : 
m p b vq elseif p>base1 then (
+1) : 
m (p-base) b vqelse let w�(w0:wq) = 
m p b vqin if w0<base then 
 : w else (
+1) : 0 : wqin 
m 
 r uqAgain, we 
onstru
t a tentative digit, summing the 
ontribution of two neigh-bouring digits of the fra
tion u, and an eventual 
orre
tion from the unknownfuture may 
onsist only in adding 1. This is safe if the 
on
erned digit isdi�erent from base-1, be
ause in this 
ase the previous digit is frozen. Nowwe 
an 
onvert the expanded fra
tions from one base to another, and this isour main 
ontribution to the BBP algorithm, admittedly neither too originalnor laborious. Here it is, the old base is the global base, and the new one ispassed as the se
ond parameter.b
onv (u0:uq) nBase = u0 : b
onv (nBase *> (0:uq)) nBaseThis 
onversion from the base 16 into 10 will fail if the number of 
onse
utive\9" is bigger than the size of the 
omputer re
ursive sta
k. Of 
ourse � mustin
lude su
h sequen
e, and our algorithmmust break down, but it might also4



die earlier and happier, be
ause of the a

umulation of lazy thunks withinthe main heap. (This did not happen in our experiments, we tried to avoidspurious memory leaks in forming the lazy fra
tions.)3 The Main ComputationWe may implement now the formula (1). We 
an either sum the rationalfra
tions and 
onvert the sum into our lazy expansion:frm i = let j=8*i(a :% b)=4%(j+1)-2%(j+4)-1%(j+5)-1%(j+6)in f
n a bor sum the four expansions separately. Both methods have their advan-tages. The �rst one produ
es less lazy lists in the storage, but needs thelong Integer numbers, the Int datatype on some platforms (for examplethe Hugs 1.4 implementation unders Windows NT) fails, be
ause the ratio-nal sum above 
reates qui
kly very voluminous rationals. The se
ond one isslower, but safer from this point of view. However, here the user should treatseparately the 0-th term, otherwise the program will immediately squeakand die, produ
ing bottom by subtra
tion 4� 1=2. This is relatively easy to
orre
t, but we shall not insist upon it.And that is almost all, but how do we 
ompute the in�nite sum in (1)?In fa
t this is a shifted sum: U (0) + U (1)=B + U (2)=B2 + � � � where B is thebase (16). We 
onstru
t �rst a list of terms: [U (0); U (1); U (2); U (3); : : : ℄, whereea
h term U (k) represents the 
oeÆ
ient in the BBP formula. The additionf + g=B+X=B2 is \almost" easy, it �rst digit needs only the �rst digit of f ,and eventually the 
arry propagated from g, if its �rst digit is too big. Weexploit the same look-ahead tri
k already seen in normal addition, and we
odepi16 = ssum (map frm [0 ..℄) wheressum (u�(u0:u1:uq) : v�(v0:_) : r) =if u1+v0<base1 then u0 : ssum ((u1:uq)<+>v : r)else let s = ssum (v:r) in u <+> (0:s)ourpi=b
onv pi16 10And now, unbelievable, but true, it suÆ
es to type ourpi, and to startwriting this arti
le. Before it is �nished we get on the s
reen5



[314159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744... ℄where we have reformatted a little the output, whi
h was a
tually longer,in fa
t we gave up after having generated 1800 digits. We have 
he
ked theresult, whi
h was almost redundant, as the program is so trivial that wehad no 
han
e to 
ommit an error, but a similar 
omputation in the pastdis
overed an error in one rational number pa
kage. . .4 Con
lusionsOur main 
on
lusion is that the program works, although it needn't to, andafter a �nite number of steps it will fail. In fa
t, this is the only su
h programwhi
h works without knowing how many digits it should generate, if at all.In su
h a way we prove that we have done a serious work. A mathemati
ally-oriented reader whose private de�nition of the word \serious" is di�erent fromours, may reje
t our te
hnique, and our only defense is that this te
hnique isnot ours. . . All the �nan
ial aid demanded by the governments of the ThirdWorld is based on the prin
iple of borrowing money without any guaranteeto pay it ba
k one day. In pra
ti
e this works, be
ause the bank bu�ers ofthe ri
h 
ountries are voluminous enough. The very idea of a bank 
redit is alazy 
o-re
ursive (runaway) algorithm, and the true Game 
onsists in running6



away before the bottom rea
hes you. The so
ial se
urity depenses in severaleuropean 
ountries operate on non-existing funds whi
h will (hopefully) un-virtualize themselves thanks to the work of future generations. Yes, thee
onomy is a non-stri
t s
ien
e. So, why should we hesitate to borrow a
arry from the \future" digits? At least this is our free 
hoi
e, while payingtaxes is not.The idea might be mu
h more fundamental than that. From the relativis-ti
 
osmology we know that the negative gravitational energy almost entirely
ompensates the energy stored in the matter. Thus, apparently the Big Bangis based on a lazy quantum algorithm, borrowing energy from the dynami
 ofthe future unrolling Universe in order to 
onstru
t it, and 
ompensating thebudget by the gravitational tension. The Almighty obviously preferred thefun
tional programming over the imperative one, but that we knew alreadyfor years, the �rst Light in the Universe is a let 
onstru
t.This paper has been written for sheer intelle
tual pleasure, and it will re-main unpublished in the Virtual Journal of Unpublished Papers. Publishingeverything makes it impossible to dis
over the Truth in the literature, andthus it serves the Devil. The author thanks his family for their 
onstantemotional support and aspirin.Referen
es[1℄ Everything you ever wanted to know about �, and mu
h more:http://www.
e
m.sfu.
a/pi orwww.go2net.
om/internet/useless/useless/pi/pi-pages.html[2℄ The Web site of Fabri
e Bellard:http://www-stud.enst.fr/~bellard/pi-
hallenge/index.html[3℄ David Bailey, Peter Borwein, Simon Plou�e, On the Rapid Computationsof Various Polylogarithmi
 Constants, Math. Comp. 66 (1997), pp. 903{913.[4℄ H.-0. Peitgen, H. J�urgens, D. Saupe, Fra
tals for the Classroom. Part 2:Complex Systems and Mandelbrot Set, Springer, N. Y., (1992).[5℄ Jerzy Kar
zmar
zuk, Generating Power of Lazy Semanti
s, Theoreti
alComputer S
ien
e 187, (1997), pp. 203{219.[6℄ David A. Turner, Elementary Strong Fun
tional Programming, Pro
eed-ings of the Symposium Fun
tional Programming Languages in Edu
a-tion, FPLE'95, Nijmegen; Springer, LNCS 1022, (1995), pp. 1{13.7


