
Lazy Processing and Optimization of Discrete Sequences

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen, France
(mailto:karczma@info.unicaen.fr

http://www.info.unicaen.fr/~karczma)

Abstract

We construct a small arithmetic package operating on dis-
crete sequences: u0, u1, u2, . . . treated as single mathe-
matical entities. Applying functions to sequences by the
generalized map, or adding them element-wise is quite triv-
ial, but if the sequences are regular, e.g. if they are arith-
metic or geometric progressions, a much more compact and
in several cases much more efficient representation is possi-
ble. For example any polynomial of an arithmetic infinite
sequence has an easily coded, and efficiently processed finite
representation through its forward differences. Even in more
general cases, the lazy manipulation of sequences results in
a remarkable compactness of coding, especially where the
processing algorithms are iterative. The main motivation of
this paper is methodologic.

1 Indexless Sequence Processing and Generation

This is a light-weight essay on practical use of functional
programming methods in the domain of coding of numeric
computations, useful for pedagogy and for concrete applica-
tive work.

Everybody needs sequences. We find them as coeffi-
cients of power series and their partial sums, as iterates
describing the discrete solutions of differential equations, as
the approximants of iterative solutions of algebraic equa-
tions, or simply as discrete samples of any function which
shall be plotted. Every (or almost) textbook on numeri-
cal methods, e. g. [1, 2], see also [3], is “polluted” by in-
dexed sequences: u1, u2, . . . , un, . . . or by iterative formulæ:
un → un+1 = f(un). This representation is adapted to im-
perative codes and their typical, indexed data structures:
arrays, usually updated in-place.

But sequences map naturally to lists, and their incre-
mental processing using well known higher-order function-
als as map, fold, zipWith etc. is the standard protocol of a
functional programmer. A function over an equally spaced
sequence implemented in Haskell needs just

u=[u0, u0+h ..]; y=map sin u

and the items resulting from an iterative process are gen-
erated by iterate f u0, giving u0, u1 = f(u0), u2 =
f(f(u0)), . . ., etc. There is no loop administration, and the
lazy generation can be decoupled from the sequence consup-
tion and analysis (e.g. the verification of the convergence,
or the ploting over a finite initial segment).

Such formulae as above are sometimes used to advertize
the functional programming, but somebody who really needs
to do numerical computations will smile, and point out that
he would prefer to see a compact and easy implementation
of

sin (x+ (i+ 2)h) = 2 sin (x+ (i+ 1)h) cos(h)− sin(x+ ih)
(1)

instead, as this form can be computed incrementally, much
more efficiently: only three calls to trigonometric functions
are needed for a sequence of any length. When the pro-
filing of a numerical program shows that the trigonometric
functions consume an important part of the processor time,
the programmer most probably had been negligent; this is
a standard folklore (see e. g. [4]). But the incremental al-
gorithms may be non-trivial to derive even in simple cases,
and the fear of introducing bugs is an important psycho-
logical factor which hinders the code optimization. Some
automatic procedures would be very useful.

So, we shall revise, and reformulate some algorithms over
sequences in an incremental fashion. We will exploit the co-
recursive data generators (not just co-recursive functions),
such as the computation of partial sums of [u0, u1, u2, . . .]→
[u0, u0 + u1, u0 + u1 + u2, . . .] through

psums (u0:uq)=w where w=u0:zipWith (+) uq w

etc. Even easier is the construction of the (very intensely
used) forward differential sequence: ∆un = un+1 − un; it is
just the term-wise difference between the tail, and the se-
quence itself. Some inherently recursive, and a little tortu-
ous algorithms, like the iterated Richardson extrapolation
will be reformulated also in such a way. Finally, we will
use a little lazy power series package (published elsewhere,
see [5]), to construct some approximation schemes based on
power series of ∆, say, needing ∆/(1 + ∆) = ∆−∆2 + · · ·.

Everything has been implemented in Haskell. We have
used a modified “algebraic style” Prelude, with the stan-
dard numeric type classes replaced by a more abstract alge-
braic hierarchy: AddGroup which defines the additive opera-
tors, Monoid for the multiplication (and sqr x = x*x, etc.),
Group for division, etc. We omit from the presentation the
instance headers and other “administrative” details.

2 Sequences as Algebraic Data Structures

In order to exploit different variants of the organization of
sequences, we need data structures a little more heteroge-
neous than simple lists. We propose the following datatype:

data Seq a = Cs a | S a (Seq a) | A a (Seq a)
| G a (Seq a)

where the tags discriminate between the following variants:

• (Cs h) is a constant infinite sequence [h, h, . . .]. It is
equivalent to (S h (S h (S h ...) ...).

• (S x0 xq) is a generic sequence [x0, x1, x2, . . .]. But
the tail xq may have – of course – any form.

• s =(A x0 d) is a diferential sequence: if d represents
[d0, d1, d2, . . .], then it is d = ∆s, or s = [x0, x0+d0, x0+
d0 + d1, . . .]. The arithmetic progression [x, x + h, x +
2h, . . .] is represented as (A x (Cs h)).

• s =(G x0 q) represents a generalized geomet-
ric progression; if q = [q0, q1, . . .], then s =
[x0, x0q0, x0q0q1, . . .]. We shall use it in restricted con-
texts, less frequently than other forms.

Note. This paper belongs to a longer series of essays on
lazy functional implementation of some mathematical ob-
jects used in scientific computing. We have mentioned al-
ready the power series, see also the implementation of an
univariate differential algebra [6]. Discrete sequences were a
natural step forward. While preparing these notes we found
the paper [7], whose authors exploit a similar formalism – a
compact representation of uniform arithmetic and geometric
sequences, and the arithmetic manipulations thereof. Their
objective is to optimize some indicial expressions in Com-
puter Algebra by rewriting. They analyze thoroughly the
complexity of the optimized algorithms.

2.1 Primitive Functions and Sequence Arithmetic

Our AddGroup class defines the addition and the negation.
Hencefrom we will omit some clauses which are consequences
of the symmetry of some operations. The AddGroup in-
stances for sequences are:

neg (Cs x) = Cs (neg x)
neg (S x s) = S (neg x) (neg s)
neg (A x r) = A (neg x) (neg r)
neg (G x q) = G (neg x) q

Cs x + Cs y = Cs (x+y)
a@(Cs x) + S y s = S (x+y) (a+s)
Cs x + A y r = A (x+y) r -- and symm.
A x xr + A y yr = A (x+y) (xr+yr)
S x xq + S y yq = S (x+y) (xq+yq)
p + q = xToS p + xToS q

Here xToS is a conversion function which expands all abbre-
viated variants into their generic form. This function is used
also for the display – the sequences are first converted into
(S ...) and then transformed into lists.

Before defining xToS we construct specific selectors which
retrieve the head and the tail: sqhd and sqtl of a sequence.
The head is trivial, but the tail needs some massaging:

sqtl p@(Cs _) = p
sqtl (S _ q) = q
sqtl (A x p) = A (x+sqhd p) (sqtl p)
sqtl (G x q) = G (x*sqhd q) (sqtl q)

We may now define the formard differences, partial sums,
and the generic conversion operator:

fd (Cs _) = Cs (fromInt 0) --Constant seq.
fd (A _ p) = p -- by definition of A.
fd p@(S _ q) = q-p
fd p@(G x (Cs q)) = (q-1)*>p
fd p = fd (xToS p)

sums p@(Cs x) = A x p
sums (S x q) = w where w = S x (w+q)
sums p = sums (xToS p)

xToS x@(S _ _) = x
xToS (Cs c) = w where w = S c w -- cyclic
xToS (A x r) = sums (S x r)
xToS p@(G x q) = S x (xToS (sqtl p))

Before passing to the multiplication we introduce a useful
class Module which is a constructor class. For every data
structure T a the instance of Module T defines an infix op-
eration (*>) :: a -> T a -> T a. The expression x*>p
multiplies by x all the elements of the compound p.

instance Module Seq where
x *> Cs y = Cs (x*y)
x *> S y p = S (x*y) (x*>p)
x *> A y d = A (x*y) (x*>d)
x *> G y q = G (x*y) q

The multiplication is quite simple

S x xq * S y yq=S (x*y) (xq*yq) --Generic.
p@(A x xq) * q@(A y yq) =

A (x*y) (p*yq+xq*q+xq*yq)
Cs x * p = x*>p -- and symm.
G x xq * G y yq = G (x*y) (xq*yq)
p * q = xToS p * xToS q

The only non-trivial but important clause is the multipli-
cation of the differential sequences, in agreement with the
formula

∆(un · vn) = un∆vn + ∆unvn + ∆un∆vn. (2)

This equation shows clearly that for the arithmetic se-
quences x =(A x0 (Cs h)) all polynomials of x have closed,
finite forms. The square of (A x (Cs h)) is equal to (A x2

(A 2hx (Cs 2h2))). The division is easy only if the divisor
is constant, or if both arguments are of the G type, otherwise
the generic conversion is performed first. More complicated
functions can obviously – in the last resort – use the Functor
instance for sequences:

fmap f (Cs x) = Cs (f x)
fmap f (S x s) = S (f x) (fmap f s)
-- fmap f p = fmap f (xToS p)
-- Not universal; needs context

but in several cases a more efficient procedure is possible, as
shown on the following examples:

exp (A x r) = G (exp x) (exp r)
sqrt (G x q) = G (sqrt x) (sqrt q)
log (G x q) = A (log x) (log q)

and finally the trigonometric functions of arithmetic se-
quences

sin (A x (Cs h)) = p where
p=S (sin x) q; q=S (sin(x+h)) r
r=(2.0*cos h)*>q - p

2

and almost the same formula for cos (A x (Cs h)). Some
combinatoric sequences take particularly simple shape, for
example for n = 0, 1, 2, . . ., n! =(G 1 (A 1 (Cs 1))). Its
generalization, the Pochhammer symbol (or rising factorial)

x(n) = Γ(x + n)/Γ(x) = x(x + 1) · · · (x + n − 1) can be
coded as (G 1 (A x (Cs 1))). This is not a rocket science,
and any reasonable program will compute such sequences by
simple multiplications. The only, but important advantage
of such representations is the possibility to code compactly
some transportable data, and not just algorithm fragments.

3 Some compact formulæ in numerical calculus

The algebra of sequences is fairly universal, and indepen-
dent of the optimization tricks which work mainly in case of
regular sampling. We show here some application examples

3.1 Aitken Extrapolation

A convergent sequence [x0, x1, x2, . . .] obtained by some it-
erative procedure, for example the solution of the equation
x = exp(−x) generated by

x = sqiter (exp . neg) 1.0 where
sqiter f u = S u (sqiter f (f u))

sometimes converges slowly, we get [1.0, 0.3679, 0.6922,
0.5005, 0.60624, 0.5454, 0.5796, 0.5601, 0.5711, 0.5649,
0.5684,. . .]. In the case of linear convergence the following
procedure

xn → x′n = xn −
(xn+1 − xn)2

xn+2 − 2xn+1 + xn
(3)

can be implemented as

aitken u = let du = fd u
in u - du*du/fd du

which stabilizes much faster: [0.58223, 0.57171, 0.56864,
0.56762, 0.56730, 0.56719, 0.56716, 0.56715, 0.56714,
0.56714,. . .]. This is known, of course, our only contribu-
tion is the code compactness.

3.2 Wynn process

There exists another transformation [8], relatively weakly
known but fairly efficient, which independently of the con-
vergence acceleration can be used for the rationalization
(Padéization) of power series. The Wynn process for the
sequence u is defined by

ε(−1)
n = 0

ε(0)n = un (4)

ε(k+1)
n = ε

(k−1)
n+1 +

1

ε
(k)
n+1 − ε

(k)
n

(Here the sequences ε(2k−1) are auxiliary only.) A strict,
indicial algorithm requires a few moments of reflection in
order to avoid useless computations. Our lazy algorithm
consists in creating a sequence of sequences, and mapping
the sequence head selector through it. The solution is wn =

ε
(n)
0 . Here is the whole code (with the omission of some

cosmetic fromInt conversions), together with the test of the
convergence acceleration of the notorious, weakly convergent
series 1− 1/2 + 1/3− 1/4 + . . . = log 2.

xfd p = fmap fd p -- Auxiliary
wynn u = fmap sqhd e where

o = A (Cs 0) (xfd o + (recip (xfd e)))
e = A u (xfd e + (recip (xfd (sqtl o))))

res = wynn (sums ((G 1.0 (-1))*recip(A 1.0 1)))

which gives [1.0, 0.7, 0.69333, 0.69315, 0.693147,
0.693147185, 0.693147181, 0.693147181. . .]. The code is eas-
ier to recognize when we separate the even and the odd sub-
sequences, and if the iterative clause of the definition (4) is
rewritten as

ε(k+1)
n − ε(k−1)

n = ε
(k−1)
n+1 − ε

(k−1)
n +

1

ε
(k)
n+1 − ε

(k)
n

(5)

3.3 Differential Equations

The choice among the enormous number of numerical equa-
tion solvers is rarely dictated by its elegance; the precision,
stability and complexity are more important criteria, but
a handy and compact formula which yields the whole nu-
meric, iterative solution of an equation might be very useful
for testing.

We show how to code the order 2 Runge-Kutta algorithm
for y(t) fulfilling the equation y′ = f(y, t), with y(t0) = y0.
Its usual presentation goes as follows:

k1 = h · f(yn, tn)

k2 = h · f(yn + k1/2, tn + h/2) (6)

yn+1 = yn + k2

If the function f can be lifted from numbers to sequences,
which can be always done with the appropriate declaration
of arithmetic instances, the entire solution of this equation
is given by y defined through

t = A t0 (Cs h)
k1 = 0.5*h *> f t y
y = A y0 (h *> f (y+k1) (t+0.5*h))

For example, when f(t, y) = −ty, we get the approximation
of the full trajectory y = exp(−t2/2) without further work.

3.4 Evaluation of Continued Fractions

According to [4] the best general method for evaluation of
continued fractions

f = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

, (7)

is the Lentz algorithm [9], much more stable than the Wallis
iterative formula invented 300 years ago. It goes as follows:

Set f0 = b0;C0 = f0;D0 = 0;
for j = 1, 2, . . .

Set Dj = 1/(bj + ajDj−1)
Set Cj = bj + aj/Cj−1

Set fj = fj−1(CjDj)
Stop when CjDj becomes almost equal to 1.

with some security valves preventing the division by zero.
Our code, together with this guard is shorter than the algo-
rithm presentation:

3

cfeval b0 b a =
let enh x = if x==0.0 then 1.0e-35 else x

tiny s = fmap enh s
d = S 0.0 (recip (tiny (b+a*d)))
c = tiny (S b0 (b+a/c))

in G (enh b0) (sqtl (c*d))

and for the exponential funtion ez for z = 1

ez = 1 +
z

1− z

2 +
z

3− · · ·

, (8)

we get the code

aa = S 1.0 (neg aa)
bb = S 1.0 (S 2.0 (tw + bb))
where tw = S 2.0 (S 0.0 tw)

res = cfeval 1.0 bb aa

yielding [1.0, 2.0, 3.0, 2.75, 2.714, 2.7179, 2.71831, 2.718283,
2.71828172, 2.71828182, 2.71828183,. . .]. The algorithm
works for classical continued fraction expansions which be-
gin with b0 = 0, for example for tan(x).

4 Romberg Integration

If a function is uniformly sampled within an interval, the
natural integration algorithms are based on various Newton-
Cotes schemes, for example the trapezoidal or Simpson rule.
But we can do much better without augmenting the number
of sampled points. If a quantity I depends on the size of the
discretization sub-interval h: I(h) = I0 + ζhp + . . ., a better
approximation to limh→0 I(h) is obtained by the popular
Richardson iterated extrapolation scheme, whose first step
here would be the subtraction

I → (2pI(h/2)− I(h)) / (2p − 1) (9)

which eliminates the ζ term. The knowledge of the leading
power of h in the remaining (error) terms permits the iter-
ation of this procedure. The Simpson rule is equivalent to
the trapezoidal algorithm iterated once.

4.1 Adaptive trapezoidal rule

We begin thus with the generation of an infinite sequence of
approximants for∫ b

a

f(x)dx = h(f(a)/2 + f1 + . . .+ fn−1 + f(b)/2) (10)

where h = (b − a)/n, with varying n → 2n. Of course,
when augmenting the density of points we reuse all the for-
mer computations. The code goes as follows, beginning with
a simple function which yields the sum of n terms of a se-
quence. (It is redundant, but we don’t want to propose code
which uses sums, and needs an explicit deforestation.)

sumn n s = sn n (sqhd s) (sqtl s) where
sn 1 x _ = x
sn m x p = sn (m-1) (x+sqhd p) (sqtl p)

trapez a b f =
let intr h n =

let hp=0.5*h
in S (sumn n (f (A (a+hp) (Cs h))))

(intr hp (2*n))
h0=b-a

in (sums (S (0.5*sumn 2 (f (S a (Cs b)))) --ugh!
(intr h0 1)))*(G h0 (Cs 0.5))

It is a bit ugly, but reasonable.
∫ 3

0
exp(−2x)dx produces

[1.5, 0.83, 0.589, 0.522, 0.5046, 0.5002, 0.4991, 0.49885,
0.498783, 0.498766, 0.498762, 0.498761,. . .]. (Of course, the
function f should be written so as to enable its lifting to the
sequence domain.)

4.2 Implementation of the iterated Richardson
Scheme

It can be proven that the convergence of the trapezoidal
rule is: I(h) = I0 + ζ1/n

2 + ζ2/n
4 + ζ3/n

6 + In (9)
p = 2. Normally there is no point in starting with n = 1,
the scheme is valid when h is small, and the expansion of
I(h) has some sense.

The final coding of the Romberg iterative scheme is very
simple and compact. The sequence of approximants u passes
through the following generator:

rombg c u = S (sqhd w) (rombg (4.0*c) w)
where w = (1.0/(c-1.0))*>(c*>sqtl u - u)

with the initial value of c equal to 4. (Of course, if we be-
gin with a quadrature which converges faster, we choose the
appropriate c = 2p.) For the example above, we get [0.6,
0.50, 0.49882, 0.498760862, 0.498760624, 0.498760624,. . .].
32 subdivisions suffice to get the precision equivalent to more
than 4000 in the trapezoidal case, and the algorithm is ro-
bust.

5 Symbolic Calculus of Finite Differences

Many useful formulae in processing of power series, or fi-
nite difference schemes in differential equation solving are
obtained through a formal, symbolic treatment of the for-
ward difference operator and some other related entities.
We might define: Eu : Eun = un+1, and formally we may
write E = 1 + ∆. The Euler acceleration formula for the
alternating power series may be derived as follows∑
n=0

(−z)nun =
1

1 + zE
u0 =

1

1 + z

1

1 + z∆/(1 + z)
u0

=
1

1 + z

∑
k=0

(−z
1 + z

)k
∆ku0, (11)

which can be coded in three lines. We may imagine a lit-
tle more involved example, where we have to sum not just
numbers: ∆ku0, but whole sequences: s =

∑
k=0

ak∆ku. If
the coefficients ak form a list, then we have to choose the
upper limit m of the summation, and apply sumn m to

sseq (a0:aq) u = S (a0*>u) (sseq aq (fd u))

This can be useful for the interpolation of uniformly spaced
tabulated functions by people who hate searching textbooks
for interpolation formulae. If un = u(x0 + nh), then u(x0 +
(n+ κ)h) = Eκun = (1 + ∆)κun, and we need to apply the

4

binomial series of ∆ to u, truncated at the desired degree of
the interpolating polynomial. The same formula applies for
the extrapolation, for example we can compute the element
u−1 as (1 + ∆)−1u0, which, when truncated at m = 2 gives
the quadratic extrapolation u−1 = 3u0 − 3u1 + u2, etc.

More intricate examples need sometimes a few trade
tricks. In order to compute the derivative of a tabulated
function, it is much better to use the symmetric difference
operator δu(x) = u(x+h/2)−u(x−h/2), than the forward
differences. We can use the symbolic form of the Taylor
expansion: E = exp(hD), where D is the differentiation
operator, to conclude that

h

2
D = log

(
δ

2
+
√

1 + δ2/4
)

(12)

which is, as expected, an odd function of δ. This is awkward.
We know how to apply effectively δ2 = E − 2 + E−1 to a
sequence (adopting some extrapolation scheme below u0).
However, after having developed the series (12) – e. g. using
the lazy power series package presented in [5], we multiply
it by

µ√
1 + δ2/4

where µu(x) =
1

2

(
u
(
x+

h

2

)
+ u

(
x− h

2

))
(13)

which is equal to 1. But then the series is in δ2, multiplied
by µδ = 1/2(E−E−1), and the technique becomes effective,
and fairly efficient.

6 Conclusions

Serious numerical computations demand usually the fastest
possible algorithms, and the elegance of programming is of-
ten relegated to the second plan. Functional techniques will
lose with brutal, but more efficient, lower level imperative
coding, implemented using arrays. However, when we have
to teach and test some tortuous recursive and/or iterative
algorithms dealing with differential equations, evaluation of
power series, etc., human resources are important even if
we know how to administrate the memory allocation for our
arrays, which is not always the case. We have shown how to
economize the human time, and how to take a pleasure at
writing numerical codes, which is usually considered to be
a very boring exercice. Our examples are simple, but they
are not toys. All algorithms presented are practically use-
ful, and they are coded without sacrificing the engineering
efficiency.

Our code is sometimes slightly frenzy, but this is obvi-
ously not the main issue, apart from the psychodramatic
goal of this talk. . . Lazy functional programming short-
ens the paradoxal gap between the standard mathematical
textbooks full of inductively defined data objects, and the
practice of programming for engineers or physicists, where
even recursive functions are not always well accepted. A
good deal of these recursive functions, and all the classical
loop administration, together with the iteration/recursion
stop criteria are eliminated through the usage of co-recursive
data.

We noticed that the laziness is a serious psychological
obstacle for a traditional user of the numerical sofware. The
separation between the generating process, and the iteration
stopping criteria, which are entirely left for the consumer
module, needs not only good compilers of lazy languages,
but some mental adjustment of the programmer. This seems

to be more delicate than the “standard” disinclination to use
the APL-style generalized folds by people formed on “C” and
similar languages.

References

[1] Germund Dahlquist, Åke Bjrck, Numerical Methods,
Prentice-Hall, Englewood Cliffs, (1974).

[2] R. Bulirsch, J. Stoer, Introduction to Numerical Anal-
ysis, Springer, N.Y., (1980).

[3] Donald E. Knuth, The Art of Computer Programming,
vol. 2: Seminumerical Algorithms, Addison-Wesley,
Reading, (1981).

[4] William H. Press, Saul A. Teukolsky, William T. Vet-
terling, Brian P. Flannery, Numerical recipes in “C”.
The Art of Scientific Computing, 2nd ed., Cambridge
Univ. Press, (1993).

[5] Jerzy Karczmarczuk, Generating Power of Lazy Se-
mantics, Theoretical Computer Science 187, (1997),
pp. 203–219.

[6] Jerzy Karczmarczuk, Functional Differentiation of
Computer Programs, Proceedings of the III ACM SIG-
PLAN International Conference on Functional Pro-
gramming, Baltimore, (1998), pp. 195–203.

[7] Olaf Bachmann, Paul S. Wang, Eugene V. Zima,
Chains of Recurrences – a Method to Expedite the Eval-
uation of Closed-Form Functions, ACM Proc. of the
International Conference on Symbolic and Algebraic
Computation (ISSAC), ACM Press, Oxford, July 1994,
pp. 242 – 249.

[8] P. Wynn, On a Device for Computing the em(Sn) trans-
formation, MTAC 10, (1956), pp. 91 – 96.

[9] W.J. Lentz, Applied Optics, 15, (1976), pp. 668 – 671.

5

