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ABSTRACT
We present a framework for representing quantum entities in Haskell.
States and operators are functional objects, and their semantics is
defined — as far as possible — independently of the base in the
Hilbert space. We construct effectively the tensor states for com-
posed systems, and we present a toy model of quantum circuit tool-
box. We conclude that functional languages areright tools for for-
mal computations in quantum physics. The paper focuses mainly
on the representation, not on computational problems.
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1. INTRODUCTION TO QUANTIZATION

1.1 How to model quantum objects?
Computer scientists became interested in quantum computing

mainly because of the possibility to accelerate the solution of al-
gorithmically hard problems, see e.g. [1, 2, 3], also [4] and many
others. But — as Feynman [5] remarked in 1982, — perhaps the
most promising direction of evolution of programmable quantum
systems is not the “algorithmics”, but the simulation ofotherquan-
tum structures. This is also advocated by Preskill [6], and worked
upon by others [7, 8, 9, 10].

It is thus legitimate to ask how to represent properties of gen-
eral quantum structures in a computer. As noted in [11], and else-
where, we need a thorough abstraction layer upon physical details,
in order to work on circuits and algorithms. There are attempts to
introduce specific programming structures for the design of typi-
cal (imperative) languages [13, 14], making it easier to code the
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transformations acting upon the quantum registers. Bird and Mu
[11] discovered the applicability of functional languages for writ-
ing such codes in a particularly compact and elegant way, and pro-
pose to use functional compositions and monadic chains to deal
gracefully with the (nondeterministic) measures. Amr Sabry [12]
goes further, and develops in Haskell a more complete functional
framework for the simulation of quantum processing units and the
observation of results. He also points out some difficulties aris-
ing from the application of typical programming languages to a
non-classical domain. For a review of other attempts to simulate
quantum structures, mainly collections of qubits manipulated im-
peratively see [15].

Typical representations of quantum entities are algebraic, in the
classical sense. A quantum state is a vector belonging to a space,
whose dimension is the number of discernible measurement results,
e.g., aqubit which classically can be “up” or “down” can be rep-
resented as a linear superposition of( 1

0 ) and( 0
1 ). A multi-qubit

is a Kronecker (tensorial) product of such matrices and needs com-
pound data structures. For a harmonic oscillator it is known that a
measurement can yield its excitation level — an integer between 0
and∞. Here we see that lazy data structures might be useful. For
the analysis of quantum algorithms qubits usually suffice, but some
papers, e.g. [16], show that in order to assemble a physical multibit
quantum gate, it is useful to couple the elements with quantum os-
cillators, objects beyond the qubit layer. In 1996 E. Knill observed
[17] that a future quantum computer will certainly be a hybrid, with
a classical part actively engaged inpreparing and interfacingthe
quantum part (hardly a surprise for physicists performing experi-
ments on quantum systems, but needing screwdrivers as well. . . ).
These meta-operations will transcend the elementary qubit abstrac-
tion layer.

Thus, our ambition is to propose ageneral, not restricted to
qubits, implementable, functional abstraction layer for quantum
entities, which would be effective even in the (observable sectors
of an) infinite-dimensional Hilbert space, and which would corre-
spond formally and intuitively to the formalism used in classical
texts devoted to quantum physics, e.g., [18, 19]. Quantum states
will be functions, and we shall use Haskell to code them. The title
of the paper has been inspired by the book [20], whose authors un-
derline the methodological usefulness of generic, functional struc-
tures for the computational representation of physical entities.1

Our framework achieves the following.

• We have a unified programming paradigm for different quan-
tum systems.

1But the similarity to the title of the book of R.I.G. Hughes,Struc-
ture and Intepretation of Quantum Mechanics, Harvard University
Press, is a pure coincidence. This book might be quite interesting
for philosophically-oriented readers.



• Functional objects areopaque, their internal structure is not
observable, they are like the conceptual quantum states used
by physicists. The only thing we can do with is to transform
them by operators, and to project them on some basis.

• The level of abstraction is very high. Abstract quantum states
can be manipulated independently of the observational frame-
work which yields numbers, the probability amplitudes. These
amplitudes are scalar products:〈φ|ψ〉 of state vectors, Dirac
“kets” |ψ〉. We are encouraged to work onuniversalprop-
erties of such vectors (such as duality), independent of their
concrete instantiation.

• The linear (vector) structure imposed on states arisesnatu-
rally and universally.

Operators (state transformers, observables, etc.) will be functions
acting upon functions, so the necessity of having a decent func-
tional programming framework is obvious. An “abstract” vector
— a geometric entity independent of the coordinate system which
would specify its components, when implemented, is a concrete
object, but it is not a data structure, manipulated, e.g., by pattern
matching. We have no access to its internal structure, so we cannot
duplicate it without decomposing it in a concrete basis.

The article is structured as follows: first we construct the quan-
tum states for some simple systems, and we introduce a set of
generic operators acting on them. Then, we show how to construct
composite systems through tensor products, which in functional
spaces is simple to define, but awkward to implement. . . Here
the Haskell multiparametric classes with functional dependencies
are very helpful. We say a few words about measurements. For
concreteness we analyse some examples of operations on quantum
oscillators, and — of course — on qubits. We construct some sim-
ple quantum circuits within our framework, and we implement a
few simple-minded algorithms, for illustration only. Some general
remarks conclude the paper.

1.2 Manufacturing physical systems
A classical system from the modelling perspective is a set of

observable states. A flip-flop (a one-bit system) has two states,
say,Up andDown, or B0 andB1 (suggesting Booleans rather than
orientation). A particle has a positionx and a momentump. A
3D rotator has an angular momentum: two real numbers describ-
ing the rotation axis, and its azimuthal speed. But systems which
have identical configuration spaces may be very different. A one-
dimensional oscillator can be described by the position and the mo-
mentum of the moving point, exactly as a free particle. But the
space topologies are different in both cases. Because of the energy
conservation, for the oscillating pointx andp arebounded, and this
changes the mathematical structure of its Hilbert space, it possesses
a discrete(Fock) basis, a free particle doesn’t. (This is similar to
the case of Fourier representation: if a function is defined on a finite
support, it can be expressed through a discrete Fourier series, while
an infinite support demands a continuous Fourier transform). This
discrete basis for the oscillator, which corresponds to its excitation
levels, will be used in some examples below, since the oscillator is
the most important system in the whole quantum physics. Passing
to some concrete descriptions we introduce the following:

A classical configuration, for exampleB1, or (θ, φ)) should be con-
sider as alabel, an “index” of a vector in a metric space. A quantum
state is represented by such a vector (cum grano salis; the norm is
fixed, and the global phase factor is unphysical). The classical state
has no vector space properties attached to it, so we treat it as a

“symbolic” description of the chosen basis, butfar the meaning of
the word “symbolic” in computer algebra packages.

Some classical description elements are superfluous in a constrain-
ing way. One cannot independently specify the positionand the
momentum, or the axis and the azimuthal speed of the rotator. They
constitutealternative sets of representative vectors. At the present
stage we don’t need to speak about the Heisenberg uncertainty, just
accept that we can represent a particle either through its momen-
tum, or through its position, in the same sense as a spinning particle
may be represented alternatively in different coordinate frames. Of
course, conversions between those frames are possible.

Here the introduction stops. We are not reinventing Quantum Me-
chanics, we are just implementing it, in a universal, but minimalist
way, using Haskell structures, so wemustskip several justification
steps. We can define thus some “physical” systems, e.g.

data Qubit = Up | Down
-- You may ask wrt. which axis, but don’t.2

data Mpoint = Xc Double | Pc Double
-- Free particle
data Rotator = Ang Double Double

| Jm Integer Integer
data Oscil = X Double | P Double

| N Integer

etc., where we observe:

• Each item defined at the right, represents a label (“index”)
set for the constructed vector space. Alternative bases are
variants of these data structures. Since a particle can take
an infinite number of positions, instead of enumerating them
all, we use a parameterized data structure. We put together
all classical (but conforming to quantum restrictions) config-
urations, all position vectorsor all momentum vectors for a
particle. Nb., for such non-denumerable cases functions will
be obviously more natural than discrete data structures. . .

• A zero-dimensional set (a finite number) of index values im-
plies a finitely-dimensional vector space, and a one-dimen-
sional one, say,X Double specifies an infinite (here even
non-denumerable) one. TheQubit datatype having two in-
stances, is the foundation of a two-dimensional space with
the basis vectors( 1

0 ) and( 0
1 ), or, in the Dirac notation:|1〉

and |0〉, or | ↑〉 and | ↓〉, etc. A basis state for a particle,
denoted by|x〉 has a continuous set of components, forx in
R1 (or R3, depending on the underlying geometry).

• For a rotator, the alternative to theangular dependency is
a pair of integers(j,m) describing the “total” angular mo-
mentum, and its projection onany axis. A qubit might be
implemented as aj = 1/2,m = ±1/2 rotator.

• In the oscillator example we introduced another (Fock) basis,
the numberk in (N k) is the level of energy, or the excita-
tion number. Its typing is partly correct, the energy levelk in
|k〉must be non-negative, whileInteger s have no such re-
strictions, but we shall deal with such details in another way.
This is the most frequently used basis for oscillators.

2The answer is ‘‘ANY’’. We cannot discuss the properties re-
lated to the underlying spatial substrate (if it exists; there are bi-
level systems where the orientation does not play any signifi-
cant role). In further examples we shall use labelsB0 and B1.



Depending on our needs, those bases may be augmented. For the
oscillator, we may introduce another alternative basis, say,...|
Ch Complex , a complex number which represent the amplitude
of a so calledcoherent state— an “almost classical” wave packet
base in which any compatible quantum state can be developed as
well. They are very important for physics, begins to interest com-
puter scientists, since logical qubits may be realized through coher-
ent multi-photon states [21], but we cannot discuss them here.

Those data structures have rather weak mathematical properties,
they are just labels related to, but not identified with the basic vec-
tors tagged by them. Their parameters (numbers, Booleans, etc.)
should be identifiable, which imposes that these data should be-
long to the classEq, but more generally they should bemeasur-
able, since they correspond to classical, physical properties. In or-
der to satisfy the superposition principle, we shall define now the
relevant mathematics, making from our quantum states full-fledged
vectors in a metric space, and we will also find a way to manufac-
ture compound systems. The metric is fundamental, since the scalar
products of state vectors give us the probabilities of measurements.
Here the methodology of the paper diverges strongly from that of
Amr Sabry [12] and others, who start with algebraic data items (tu-
ples, lists or arrays) on which they impose the vector structure. We
are going toconstructthis linear structureab ovo.

2. BASIC PROGRAMMING WITH QUAN-
TUM STATES

2.1 Induced vector structure
From the perspective of a functional programmer the problem

consists in constructing somelinear functions, sayf such that,
say, f (N 2) is the specified component of avector. Although
the specified data have noa priori arithmetic properties, we can
easily give them tofunctionsover those labels, by a known, stan-
dard construction, described in many books, e.g., [22]. We define
some abstract addition and multiplication by a scalar as members
of a class which represents vector spaces, and we say that some
functions whose co-domain are Scalars, make the instance of this
class:

infixl 7 *>
infixl 6 <+>,<->

class Vspace v where
(<+>) :: v -> v -> v
(<->) :: v -> v -> v
(*>) :: Scalar -> v -> v

type HV b = b->Scalar
instance Vspace (HV b) where

(f <+> g) a = f a + g a
(f <-> g) a = f a - g a
(c *> f) a = c*(f a)

whereScalar is usually aComplex Double , but other possi-
bilities may also be interesting. Now we shall construct an induced
metric. First wepostulatethe existence of a particular form, a
“scalar product” for the state labels. We call this form the “bracket”.
For example, the formbracket (N j) (N k) is defined as a
member of a particular type class:

class Eq a => Hbase a where
bracket :: a -> a -> Scalar
bracket j k = kdelta j k -- Kronecker

instance Hbase Qubit

instance Hbase Oscil -- etc.

kdelta a b = if a==b then 1 else 0

It corresponds to the physical requirement that different classical
states are fully distinguishable, and it will generate the orthogonal-
ity properties of the true scalar product in the induced vector space
usually denoted by the Dirac bracket〈j|k〉. This holds only for
discrete labels, in the continuous case we would need a more so-
phisticated apparatus: the generalized functions such as the Dirac
delta. This is realizable, but cannot be discussed here.

The instances may override the default bracket, for example in
theNbase of theOscil system the following holds:

bracket (N j) (N k)
| j>=0 && k>=0 = kdelta j k
| otherwise = 0

in order to eliminate the spurious negative levels. For the rota-
tor discrete base:|j,m〉: |m| ≤ j must hold. There exist non-
orthogonal bases as well (the coherent states for an oscillator is a
good example thereof), and alternative bases have no reasons to be
orthogonal, e.g.,bracket (X x) (P p) is a complex expo-
nentialexp (ipx) which expresses the fact that a particle well lo-
calized in the momentum space is described by a plane wave (in this
paper the Planck constant:~ = 1). In any case the brackets must
fulfil the relation bracket a b = conjugate (bracket
b a) , should be non-degenerate (not all vanishing), and positive:
bracket a a is real,> 0.

For readability we introduce another name forbracket :

axis :: (Hbase a) => a -> HV a
axis = bracket

andby postulatethe partially applied functionaxis α represents
abasic adjointstate〈α| for anyα belonging to aHbase . Axes are
full-fledged vectors, we can write(2 + i)〈3| − 4〈1| as

f = (2:+1)*>axis(N 3) <-> 4*>axis(N 1)

etc.3 We see here the power of a functional language, we have
effectively created an “abstraction”. The constructpsi = axis
(N 4) is opaque, we cannot extract its component, we can only
check its value against another one, by applying it to, say,(N k) ,
and getting 0 or 1. This is a way the quantum elementary measuring
processes are initiated, but this “filtering”, and the construction of a
probability amplitude needs in general also a “finalizing”, feeding
its square to a random number generator in order to get a concrete
experimental answer).

A meaningful property of the structure imposed on the quantum
states is thatphysicallyin the addition〈χ| = 〈φ| + 〈ψ| the two
terms are evaluated in parallel, simultaneously, and the addition
takes no physical time. In any classical simulation of quantum pro-
cesses, this is impossible, and this distinguishes the complexity of
quantum processes from their classical simulations.

In our implementation, in order to compute scalar products in-
volving the combinations above we will need somelinear func-
tionals. Axes are auxiliary entities which cannot be linear because
theHbase has no associated algebra.

So, in the next step we define the dual base “ket”s:| ↑〉, |n〉, etc.,
as functions over our vector base (the axes). The term “vector”
used generically will denote both axes and kets, but more specifi-
cally, the axes will be namedco-vectors, in order not to forget the
distinction between them. Again, Haskell permits to make auni-
versalconstruction, the primitive kets, dual to elementary axes, are:
3a:+b denotes in Haskell the complex numbera+ ib.



ket :: (Hbase a) => a->(HV (HV a))
ket alpha ax = ax alpha

(or ket = flip id , sometimes called the T combinator). The
following test:

ax = 5.0*>axis(N 3) <-> 7.0*>axis(N 2)
kt = 9.0*>ket(N 2) <+> 2.0*>ket(N 3)
res = kt ax

givesres = −53.0, and the first stage of our construction is almost
complete. Our abstract functional vectors have now sufficiently
rich mathematical structure. Kets, combinations of(ket α) are
functions belonging also to aVspace , but, moreover, they are lin-
ear (the proof thereof is a useful exercise, showing how the linearity
is “inherited”).

One might raise a practical claim that it would beeasierto rep-
resentax as a lazy list:ax=[0, 0, -7, 5, 0,...] , etc.,
which would also permit to trivialize the duality operation. This
would be dangerous, since scalar products are full reductors, not
applicable directly to infinite lists. We couldn’t compute the norm
of a vector, while in our formulation finitely constructed functions
yield always finite answers, unless badly used.

As mentioned above, axes are auxiliary vectors, physicists usu-
ally represent a state by a ket. We shall need thus the possibility
to computescalar productsof kets:〈φ|ψ〉 of arbitrary|ψ〉 and|φ〉,
and in particular the squared norm|||ψ〉||2 = 〈ψ|ψ〉. Thus, we need
duals to kets. They will also be useful for the construction of pro-
jection operators|ψ〉〈ψ|. The dual to a ketkt should be an axis, a
function overHbase . The following should hold

(dual kt) alpha = conjugate (kt (axis alpha))

We may simplify the notation even more:

dual :: (Hbase a) => (HV (HV a)) -> HV a
dual = conj . transp -- where
conj f = conjugate . f
transp = boost axis
boost = flip (.)

Proof of the construction: ifkt = ket alpha is an elementary
ket, then

dual kt beta = dual (ket alpha) beta
= conj (ket alpha . axis) beta
= conjugate (ket alpha (axis beta))
= axis alpha beta

which is correct. The linearity does the rest,kt (dual kt)
yields 85. The construction seems unnecessarily complicated. For
anyaxes objects〈α| and〈β| we can compute〈α|β〉 as

〈α|β〉 =
∑

γ

〈α|γ〉〈γ|β〉 =
∑

γ

〈α|γ〉〈β|γ〉∗ , (1)

whereγ is a Hbase index. In fact, for a finite base (e.g., the
qubits), this is an effective procedure. However if the base is in-
finite, but all theconcretelyconstructed kets within the program
come from finite linear combinations, our procedure yields the re-
sult after a finite number of steps, while the formal prescription (1)
is ill-defined, and might never terminate. Moreover, the decom-
position of a quantum state in a concrete basis from the physical
point of view is not a neutral operation, it constitutes a measure-
ment; formal insertion of1 =

∑
γ |γ〉〈γ| into a Dirac bracket is a

purely formal trick, not done by Nature4. We shall use it in many
4This is a philosophical question: does Nature measure the compo-
nents of unobserved state vectors? We don’t think so. . .

scientific calculi, but it should be avoided — if possible — in the
simulationof quantum circuits, apart from primitive gates, since it
puts by hand a measurement inside a quantum process. And one of
raisons d’êtreof our exercise is its methodological purity. . .

The constructed framework gives a recipe for programming the
quantum probability amplitudes for the state|ψ〉: 〈α|ψ〉, or the
physical measurement probabilities

Pα(ψ) = |〈α|ψ〉|2 (2)

that a system whose state is|ψ〉 yields upon a measurement the re-
sult which correspond to the componentα (e.g., the spin is “down”,
or the oscillator finds itself at the ground level).

We may complete theVspace class with the introduction of the
zero vector,vZero = const 0 . It is not needed as an indepen-
dent object, but it is useful for the optimisation of some formulae.

2.2 General bras and bi-dual base
If we know how kets act on axes, we may reverse the prob-

lem, and find a bi-dual base offunctions acting on kets, yielding
scalars. They are identified with arbitrarybras 〈 |. (Recall that
axes were functions overHbases only, and we could not use them
in arbitrary scalar products, although they spanned a vector space.)
In order to transform a ket into a bra, we apply the functioncoax :

coax::(Hbase a)=>
(HV (HV a)) -> HV (HV (HV a))

coax = flip id . dual

which expresses the identitycoax phi psi = psi (dual
phi) ≡ 〈φ|ψ〉.

In particular, an elementary bra〈α| belonging to this family, may
be defined asbra alpha = coax (ket alpha) , orbra =
coax . ket . This construction fulfills:

bra :: (Hbase a) => a -> HV (HV (HV a))
(bra alpha) kt = (kt (axis alpha))

and we may construct directly the linear combination of such bras
without passing by the auxiliary axes.

The reader should observe that we have two transformations from
the dual basis| 〉 (kets) to〈 | of two species:dual produces axes,
while coax yields bras. The functionalket = flip id itself
transforms axes into bras, the diagram on the Fig. 1 is commuta-
tive. (Thus,ket may be used in a more polymorphic context that
it seems from its introductory definition.)

|ket〉 〈axis|

〈bra|

dual

coax ket

Figure 1: From kets to bras

On the other handthere is no trivial (categorically universal) trans-
formation from bras (including axes) to kets, the only way is the
decomposition of a bra in a basis, and the reconstruction of its dual
from the coefficients. It involves thus a filtering, a part of measure-
ment, and this is another part of our methodological defense against
arguments that it would be much simpler to use standard matrices,
where the construction of adjoints is conceptually, and technically
easy. We refuse to “know too much”.



Of course, the constructions above are not always required for
actual solving of quantum problems, but show nicely some univer-
sal properties of the functional/geometric reasoning, and give us the
feeling comparable to what we have manipulating abstract entities
on paper. We show here how to develop animplementable quantum
formalism, not how to construct quantum algorithms.

2.3 Operators
Linear operators: functions from vectors to vectors in quantum

mechanics play primordial roles, some of them correspond to ob-
servables, other to symmetry transformers, and the time whole evo-
lution of a quantum system is given by a linear operator. Actually,
the only thing we can do with a quantum state, apart from comput-
ing scalar products, is to apply a linear operator to it. All quantum
circuits are composition of linear operators. All observations in-
volve the application of some “observable” operator. The operators
form a vector space, the relevant class instance is

type HM b = HV b -> HV b
instance Vspace (HM b)

where
vZero v = vZero
(f <+> g) a = f a <+> g a
(f <-> g) a = f a <-> g a
(c *> f) a = c*>(f a)

and if the base is finite, they may be effectively represented as ma-
trices. In functional representation the multiplication of operators
is just their composition.

We may specify operators by their action on theHbase objects,
e.g., saying that a spin is inverted, or that(N k) should become
(N (k-1)) , etc., and lifting them to functions. But the construc-
tion of functionals acting on functional objects in this way, is deli-
cate, we shall not forget that lifting the setX of objects to a vector
space Fun(X) of functions on them is acontravariant functor. If
we have a transformationF : X → Y , then the induced operator
F ∗ is adjoint,F ∗ : Fun(Y ) → Fun(X). This can be seen from
the standard definition, the pullback:(F ∗f)x = f(Fx). This is
important for the lifting of operators to the dual base.

One standard class of operators is composed out ofouter products
of vectors:|φ〉, |ψ〉 → |φ〉〈ψ|, defined as|φ〉〈ψ||χ〉 = 〈ψ|χ〉 · |φ〉.
In Haskell we get

outer :: (Vspace v, Hbase a) =>
v -> HV (HV a) -> HV (HV a) -> v

(outer phi psi) chi = coax psi chi *> phi
-- = chi (dual psi) *> phi

One simple and useful member of this family is a primitive projec-
tor P̂α = |α〉〈α|, whereα is an index. It may act on any vector,
and it is defined bŷPα|ψ〉 = 〈α|ψ〉 · |α〉. We must decide whether
we need it to act on axes, kets, or on general bras. There are thus
three differently typed instances of this operator.

axproj::(Hbase a) => a -> HM a
axproj alpha ax = ax alpha *> axis alpha
ktproj::(Hbase a) => a -> HM (HV a)
ktproj alpha kt =

kt (axis alpha) *> ket alpha
brproj::(Hbase a) => a->HM (HV (HV a))
brproj alpha br =

br (ket alpha) *> bra alpha
-- = br f *> coax f where f=ket alpha

(In a more consequent framework this should be one overloaded
object; the class representing vector spaces should be appropriately
augmented; this work is in progress).

In the section (2.2) we have shown how to construct co-vectors
out of vectors, by the duality operations. The contravariance im-
plies that having operators acting on co-vectors, e.g. on axes, we
can reconstruct operators acting on kets, the recipe is universal, but
we construct the adjoints! From an operator defined on axes, we
construct one acting on kets byboost , introduced above. As ex-
amples we shall construct the operator of energy (quantum level)
N̂ (called: level ) of an oscillator in theN basis, and the annihi-
lator operator̂a (calledann ) which decrements the excitation level
n. They are defined by their actions on a one-component ket in this
basis:

N̂ |n〉 = n|n〉 , â|n〉 =
√
n|n− 1〉 (for n ≥ 0) . (3)

Their decomposition gives infinite sums

N̂ =

∞∑
n=0

n|n〉〈n| , â =

∞∑
n=0

√
n|n− 1〉〈n| . (4)

Here is the coding oflevel , starting with an auxiliary linear func-
tion ax_level which acts on axes, and has the following seman-
tics: ax_level (axis (N n)) givesn*>axis(N n) . Its
definition is unique

ax_level ax a@(N n) = fromInteger n * ax a

The lifting of it to kets is given bylevel = boost ax_level .
Following the same reasoning we may define the annihilation (low-
ering) operator̂a, and its adjoint (or its hermitian conjugate), the
“creation” operator, which increments the level of the oscillator:
â+|n〉 =

√
n+ 1|n + 1〉, namedcre . These infinite matrices

have close functional representationsann = boost ax_ann ,
cre = boost ax_cre , whereax_ann , ax_cre are opera-
tors acting on axes. We take into account the contravariance of the
lifting functor, which means that in the axes’ space we must effec-
tively define the adjoints:

ax_ann ax (N n) = isqrt n * ax (N (n-1))
ax_cre ax (N n) = isqrt(n+1) * ax (N (n+1))
-- (isqrt = sqrt . fromInteger)

It is easy to verify thatax_ann acting on a primitivez=axis
(N k) produces a co-vector proportional toaxis (N (k+1)) ,
since non-vanishingz (N (n-1) implies a non-zero(ax_ann
z) (N n) . In the ket space the duality reverses this behaviour.

We have the quantum oscillator in the computer in the form as
abstract as possible, and we can solve several exercises from a
quantum mechanics textbook by programming, for example show
thatcre . ann yields an operator equivalent tolevel , or that
the commutatorann . cre <-> cre . ann is the iden-
tity. If we invest the knowledge that for the oscillator the operator
of the spatial positionx can be expressed asx = (â+ â+)/

√
2, we

can easily derive the oscillator wave-functions (Hermite functions)
from the recurrence relations involving|n〉, see our introductory
article [23], where we have also proposed a very compact program
which gives in a few lines the complete lazy perturbational solu-
tion of the anharmonic oscillator problem. The code is available
from the author. The approach taken typically by physicists in this
context, is a heavy use of computer algebra packages, not used for
insight, but for generating numerical programs. Here our manipu-
lations are formal, but we process computational structures rather
than symbols. In this sense this paper is the continuation of the
philosophy exposed in [24].



All operators in the let space can be lifted to their adjoints acting
on bras, but the presented construction does not permit to derive the
adjoint which would act on vector of the same species, by the stan-
dard relation:〈α|T+|β〉 = (〈β|T |α〉)∗. The constructionof an
adjoint is a non-universal procedure. Only in a concrete basis it re-
duces to simple operations, such as matrix transposing and complex
conjugation, otherwise some other specific properties of the opera-
tor must be known, e.g., the fact that

(
d

dx

)+
= − d

dx
on the domain

of functions which behave sufficiently decently (vanish sufficiently
fast) at the boundaries of the region which determines their scalar
product. Here the algebraic data types are easier to manipulate than
functional objects.

2.4 Some qubit operators
We return to quantum bits and their sequences, sincetodaythey

are more important for computer scientists than oscillators, point
particles, etc. The operators which transform kets:|ψ〉 → |ψ〉′ =

Â|ψ〉must be linear and unitary (preserving the norm). In the clas-
sical concrete representation, where the state is a “concrete” vector
( α

β ), an operator is a2 × 2 matrix. We shall use mainly projec-
tors, and we will see that we might define composition of operators
backwards, using their adjoints.

The unary “not” (Boolean negation) operator lifted to the domain
of vectors (kets) should satisfy:qnot|0〉 = |1〉; qnot|1〉 = |0〉.
Its matrix representation is thus the Pauliσx matrix: qnot =

( 0 1
1 0 ). It is self-adjoint, and moreover it is an involution (its own in-

verse). Its more abstract representation is the “switching” operator
|0〉〈1|+ |1〉〈0|, and this is our implementation, which is a slightly
modified set of functionals already presented in the section (2.3),
but restricted to represent dyadic products of kets, elementary or
not. Thus for any kets|p〉 and|q〉 we define|p〉〈q|:

dyade :: (Vspace (HV a), Hbase a) =>
(HV t) -> HV (HV a) -> t -> HV a

dyade p q = \ax -> p ax *> dual q

and for elementary|α〉, whereα is a state label, we havewarp
alpha beta = dyade (ket alpha) (ket beta) , which
can be optimised into

warp alpha beta =
\ax -> ax alpha *> axis beta

The projector|α〉〈α| is just warp alpha alpha . We named
“warping” the dyade|α〉〈β|, since it “bends” one direction in the
Hilbert space onto another one, but this is not a standard term. The
quantum negation is

qnot :: HM Qubit
qnot = warp B0 B1 <+> warp B1 B0

Theπ-phase shifterσz (another Pauli operator) represented by the
matrix

(
1 0
0 −1

)
takes the form

sigz :: HM Qubit
sigz = proj B0 <-> proj B1

and the sum

ax_had = sqrt 0.5 *>(qnot <+> sigz)

produces the matrixH = 1√
2

(
1 1
1 −1

)
, the Hadamard operator,

which performs the transformations|0〉 → (|0〉 + |1〉)/
√

2, and
|1〉 → (|0〉−|1〉)/

√
2, used further to build entangled pairs, to con-

struct the quantum Fourier transform, etc. An arbitrary (real) rota-

tion which transforms, say,( 1
0 ) into

(
cos(θ)
sin(θ)

)
:

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
has the representation

rot theta = cos theta *> id <+>
sin theta *> (warp B1 B0 <-> warp B0 B1)

where the second term is proportional to the third Pauli matrix,
σy =

(
0 −i
i 0

)
, most papers on quantum computing traditionally

omitting the imaginary factor.
Note the — already observed — contravariance of the operator

construction, in view of the fact that operators are functions which
do something to arguments of their arguments. The operators de-
fined above,qnot , ax_had etc. act on axes. We have toboost
them so that can work on kets. Suppose that we shall sequentially
act on a ket|ψ〉 with two operators, say, first withA (opa ), and
then withB (opb ). The computation:|χ〉 = B A|ψ〉, which can
be graphically depicted as shown on Fig. 2, is implemented as fol-
lows. First we define the operatorsax_opa, ax_opb acting on
co-vectors (axes), and at the end weboost them:

opa = boost ax_opa
opb = boost ax_opb

This “quirk” will be very important for the construction on opera-
tors acting on tensor products, which are multi-linear. So, we have

|ψ〉AB

Figure 2: Chain of operators

chi = boost opbx (boost opax psi) =
psi . opax . opbx =
boost (opax . opbx) psi

That’s why on the Fig. 2 the operators acting on kets are applied
as drawn — from right to left, which is the opposite convention to
one found in many papers on quantum gates, etc. Butthis drawing
convention corresponds better to the standard (Dirac) notation, and
we shall keep it for mnemonic purposes.

3. CONSTRUCTION OF COMPOSITE SYS-
TEMS

3.1 From Cartesian to tensor products
The construction of a classical system with many degrees of

freedom, such as two rotators, or an oscillating particle with spin,
is based on the simple set product: the system state is described,
say, by a two-valued variableand with its excitation level. In gen-
eral, we can — in principle — build a compoundHbase using the
Cartesian product constructor:

data Qbase = Q Qubit | ...
| CP Qbase Qbase

A common truth in quantum physics is: the joint quantum state
of two independent systems is their tensor product. For a modern
discussion of this issue see [25], but the book [22] and many others
provide a complete discussion of the related mathematics. See also
the rich Web site of John Baez [26]. The forms above, involving
CPwill not be used at all.

If we want to constructelementarytwo- (or more, but practically
restricted to few) sub-system states, say,|0〉|1〉, we may start with
multilinear primitives, e.g.,



ket_2 alpha beta = \ax1 ax2 ->
(ax1 alpha)*(ax2 beta)

In general, if a ket is a linear function defined on axes, a tensor
product of two (or more) kets is a bi-linear (multi-linear) function
of two or more axes: ifkt1 = \ax->ktf1; kt2 = \ax-
>ktf2 , then kt1<*>kt2 = \ax1 ax2->ktf1*ktf2 , and
this should be appropriately generalized to multi-linear forms. Know-
ing that our functions will need many arguments, it is good to define
more general Vector Space instances, e.g.:

instance (Vspace b) => Vspace (a->b)
where

vZero v = vZero
f <+> g = \x -> f x <+> g x
f <-> g = \x -> f x <-> g x
(a *> f) x = a *> (f x)

where the lifted arithmetic operations are defined recursively. The
tensors are defined with the aid of the outer multiplication operator
(<*>) , and they use seriously the multi-parametric classes with
functional dependencies [27] in order to be sufficiently universal,
but concrete enough so that the user doesn’t need to put concrete
type signatures everywhere. We define

class Tensor v1 v2 v3 | v1 v2 -> v3
where

(<*>) :: v1 -> v2 -> v3

where the functional dependency means that the type of(p + q)-
linear tensors can be deduced from thep- and q-linearity of the
factors. Scalars are natural tensors:

instance (Vspace v)=>Tensor Scalar v v
where

s <*> v = s *> v

and the most important recursive type constraint is

instance (Tensor v1 v2 v3)
=> Tensor (a->v1) v2 (a->v3)

where
u <*> v = \x -> u x <*> v

so, now we can constructket2 = ket B0 <*> ket B1 , and
use it in our calculations. It is easy to prove that the tensor product
is associative, although non-commutative. Instead of|ψ〉 ⊗ |φ〉 we
may write|ψ〉|φ〉, or |ψφ〉.

The tensor product of states is an “irreversible operation” in the
sense that in general it is not possible to extract one subsystem,
although by performing a partial measurement (applying the vec-
tor to an incomplete set of Hbase arguments), the arity of the state
function is reduced. The result is (usually) not normalized, and
needs thus some re-interpretation, very important from the mea-
sure point of view. If a given bi- or multi-system state is not a
single tensor product but a sum thereof, for example if|ψ〉 =
1√
2
(|0〉|0〉 − |1〉|1〉), then this extraction of a single subsystemis

not possible at allwithout destroying the quantum structure of the
state. We say that the two subsystems areentangled. They form a
whole, even if the two subsystems are separated in space by a large
distance. This conceptual problem is of utmost importance, and it
is discussed in almost all general papers introducing quantum com-
puters. For a thorough discussion see [28]5. We cannot pursue this
topic here, we signal only that because of the entanglementa com-
plete simulator of a quantum system cannot be modularised into
5We thank one of the Reviewers for this reference.

small, local units, each dealing with a small local sector of the
global state. The full state is shared. This non-separability is true
for anymodel of a quantum system. Does the functional program-
ming have any advantages wrt. modelling approaches which use
bit strings and complex arrays? We are tempted to say: yes. The
construction of tensor products in function spaces is morenatural
than for classical data structures. The implementation of entangled
states is as simple as possible, while such a construction which uses
pairs of data items representing single qubits, see e.g. [12], might
be considered (from the physicist point of view) somehow artificial,
although easier to manipulate.

3.2 Dual tensors
This section is rather short, but the issue is involved, and it re-

quires more work. In order to compute scalar products we need
dual bases also for composite systems. Passing from such kets, or
from any combinations thereof to axes of known, low arity is rela-
tively simple. We have to conjugate the result of the transposition

(transp_2 ktp) alpha beta =
ktp (axis alpha) (axis beta)

wherektp is a 2-product ket, andalpha andbeta are the ap-
propriate Hbase elements. We see that a compound axis is also
a bilinear function, and doesn’t involve any “classical” Cartesian
product of the associated Hbase labels. In general, the definition
above may be simplified to a combinator form:transp_2 =
(transp .) . transp , and a general transposed to a multi-
ket

transp_n ktp q1 ... qn = \q1 ... qn ->
ktp (axis q1) ... (axis qn)

may be represented as

transp_n = (transp_n1 .) . transp

wheren1≡n-1 . We havedual_2 = (conj .) . transp_2
and in general the conjugation oftransp_n involvesn composi-
tions, which is not nice.

For the scalar products (and the squared norms) we may begin
with those forms acting on axes, but the procedure is effective on
finite bases only, since it involves the summing of the complete set
of projections. For qubits:

axprod2 ax2 bx2 =
sum [ax2 x y*conjugate (bx x y)|x<-ql,y<-ql]

-- where
ql=[B0,B1]

with obvious generalization for higher rank axes. The norm of a
2-ket for theQubit system is given by

norm2_2 ktp = axprod2 ax2 ax2 where
ax2 = dual_2 ktp

Thus, we can compute the probability amplitudes of compound 2-,
and higher, with known rank vectors quite easily, but the technique
becomes difficult, and infinite bases, although possible to deal with,
require a special treatment. Still, our functional approach offers an
advantage, the universality and simplicity of notation, but the issue
is difficult in any model.

3.3 Operators on tensor product states
Mathematically the tensor product of̂A1 which acts on|ψ1〉, and

Â2 concerned with the second subsystem, is the operatorÂ1 ⊗ Â2

whose semantics is the following:(
Â1 ⊗ Â2

)(
|ψ1〉 ⊗ |ψ2〉

)
= (Â1|ψ1〉)⊗ (Â2|ψ2〉) . (5)



The implementation seems quite complicated, especially if we think
already that the vectors which will be processed directly by the
functionals defined in the program are in fact co-vectors (axes); we
will have to boost multi-linear functions.

In different words: we have a set of “input”, and a set of “output
lines”, like on Fig. 3, and we have to constructoneobject which
performs this transformation. It is interesting to observe that when

??

Figure 3: Operator on a composite state

we define such transformation acting on kets, (single kets which
are tensorial, i.e., multilinear), the argument of the operator pro-
vides structurally a “continuation”, and the composition of such
operators is stylistically a little similar to the CPS programming.

Constructing the product of two operators is almost straightfor-
ward:

boost_2 ao1 ao2 ktp =
\ax1 ax2 -> ktp (ao1 ax1) (ao2 ax2)

whereao1 andao2 are operators acting on single axes, andktp
is a 2-ket. Attention, the type checker will acceptao1<*>ao2 ,
but the result is wrong. Although operators form a vector space, its
tensorial structure is different from functionals interpreted as vec-
tors. (Our notation and the type classes are being currently revised).
Such factorised object can be depicted as on Fig. 4.

A1

A2

Figure 4: Tensor product of operators

The recursive construction of N-argument operators from lower-
rank objects is not completely trivial. The definition ofboost_2
above may be reduced to

boost_2 ao1 ao2 = (boost ao2 .) . boost ao1

and for a product of rank 1 tensors,boost_n , defined as

\ktp -> \ax1 ax2 ... axn ->
ktp (ao1 ax1) (ao2 ax2) ... (aon axn)

reduces to(boost_n1 ao2 ... aon .).(boost ao1) ,
wheren1≡n-1 , similarly to the reduction of duals to composites.

The multiplication of arbitrary composite tensors is clumsy, sim-
ple to do when tensors areexplicitly given, and their rank is small.
We have reached the zone where the structure of standard Haskell
is not as convenient for us as before. In a realistic example, deal-
ing with many qubits, we will have to construct functions with a
huge number of arguments, and this is more difficult to digest than,
say, manipulating an array with thousands of elements. There are
no fundamental obstacles to that, but from the practical perspective
the situation deserves some thoughts concerning the modulariza-
tion and the compilation of those programs.

We need to compose functions with various arities, and — as
show the circuit examples below – we need some generic tech-
niques permitting to rearrange arguments of such objects. As the
construction of multi-linear objects, duals, etc. isregular, with re-
cursively defined types and arities, the construction of appropriate
combinators is not too difficult, but the results are ugly. We are
convinced that several problems can be solved with the template
extensions to Haskell[29]. Our work on the application of template
tools has just begun.

4. MEASUREMENTS
In a quantum system any attempt to find out the information hid-

den in an unknown state will modify this state. Thus, this measur-
ing process must be included in the theoretical model of a quan-
tum system and of the information flow therein, if it is to be com-
plete enough so as to deserve the name of ‘simulation’. If one be-
gins with concrete bit matrices which may be regarded, copied and
transformed at will, the model is already “too classical” in the sense
that we can “cheat” by looking inside it.

Bird and Mu propose that the quantum registers undergo a mon-
adic, structured sequence of operations, giving to programs written
in such a style an imperative feeling. We have just transformations
of functions. The full state is always explicit, but the information
within is well hidden.

4.1 Final computed results
As long as we stay within the quantum framework,all measure-

ments (generation of numerical results) reduce themselves to com-
puting of the mean values of some self-adjoint operatorsÂ in a
state|ψ〉, which is denoted by〈ψ|Â|ψ〉. One reads that the quan-
tum measurements give us the probabilities of the components|α〉
found in a given state, but this — according to (2) — is also an
average of a self-adjoint operator, of a projector:

|〈α|ψ〉|2 = 〈ψ|
(
|α〉〈α|

)
|ψ〉 . (6)

Finally, the model gives us the probabilities, they are numbers, and
we may stop. If we decide to go further, the remaining work is a
“normal”, classical (albeit non-deterministic) computation: we use
some random number generator in order to generate the instances
of the concrete classical configurations, according to the prescribed
probabilities, see [11] for a functional framework for such a proce-
dure. Here Haskell does not offer any particular advantage over
other languages, apart from the elegance of notation.

In order to get some results methodologically meaningful, we
must repeat the simulated experience many times. Unless we are
sure that the result of a quantum process is either a value “↑” or
“↓”, and not an arbitrary superposition thereof,one individual ex-
perience conveys almost no information. This means that we must
operate from the beginning on ensembles of many identically pre-
pared quantum systems, and to use a random number generator
many times, in order to gather a meaningful statistics. On the other
hand, many serious algorithms in quantum computing are designed
to generate “committed” (or almost) states corresponding to clas-
sical configurations, and not to their superposition. In such a way
onemeasurement should provide a definite answer.

Our package uses random number generators to producearbi-
trary (finite, tabularized) discrete distributions, and it may work
even in some cases of infinitely dimensional bases, provided that
the probability amplitudes vanish sufficiently fast.

4.2 Entanglement example; mixed states
Let’s analyze a classical Einstein-Rosen-Podolski problem [30].

Suppose that we have prepared two qubits in an entangled state|χ〉



chi = sqrt 0.5 *>
(ket B0<*>ket B0 <+> ket B1<*>ket B1)

We adopt the convention that in any context, in the definition above,
or in the expressions|ab〉, or 〈ab|, always theleft symbol (here:a)
belongs to the “first” subsystem.

Now we say that the first qubit is sent to Alice and the other to
Bob6. Alice measures her system, and obtains, sayBO, which im-
mediately “collapses” the configuration of the qubit owned by Bob
to B0 as well. But Alice is a functional programmer, and wants to
simulate the procedure. She knows thatchi is somehowshared by
herself and Bob, that they belong to the same non-separable sec-
tor of quantum world, despite the current physical separation of the
subsystems. What happens tochi when she measures her qubit?
If we are toprogram it, we must be disciplined. For example, we
are not allowed to say that “the state of the qubit owned by Bob
collapses”, we cannot code it.

The only possible procedure for Alice is:

• She constructs a projector for her qubit, say|0〉〈0|1, where
the subscript is a visual remainder.

• She cannot touch the second qubit. She makes the tensor
product of her projector by the identity12, and applies it.

• The filtered state is|ζ〉 = 1√
2
|00〉. The normalization factor

gives the amplitude of a successful reduction. Of course,
the experience may randomly produce1√

2
|11〉. The factor

1/
√

2 gives the probability amplitude forthis reduction. The
new state (duly normalized to 1; the probability amplitude
generated at Alice’s site has no meaning for him) is the vector
Bob can use.

• The translation to Haskell of all this is a pure syntax, the
operator which acts onchi (for theB0 reduction) isop =
boost_2 (proj B0) id , and this is all. A complete
simulation must unfortunately compute all possible filterings,
and classically it might be a costly procedure.

We shall reiterate a similar manipulation in the next section when
discussing the simulation of the teleportation.

And now comes the touchy point. We said that Bob is left with
the stateket B0<*>ket B0 (or the other one). But how can
he know that Alice performed the measurement? He cannot. He
will get a random result independently of whether he uses the orig-
inal state vector, or the vector reduced, but in the latter case the
“randomization” takes place at Alice’s site! The program which
simulates Bobmustknow it. There isone statewhich propagates
along the chain of linear transformations until the final measure-
ment which produces a known, final state. Bird and Mu suggest an
analogy between such streamlining of operations and the monadic
chain in a purely functional framework. We may intuitively think
of it as a chain of transformations of physical attributes of the sys-
tem, while in fact we are just composing functions (like in a State
Monad) acting on “virtual attributes”. The difference between the
Bird and Mu formulation, and ours is that they chain the operator
applications, acting ultimately on a data item representing a regis-
ter.

The situation changes when we want to decouple Bob from Al-
ice through decoherence, a phenomenon whichsurely will influ-
ence the behaviour of a quantum computer attached to a classical
interface. We put his subsystem in a statistical framework, saying
that Bob will perform his measurements assuming that all possible

6These names became folkloric.

measurements at Alice’s site have been completed. The quantum
theory says that Bob should use amixed state. It is easy to see that
in all final, physicalformulae involving a state|ψ〉 one really needs
its projector form|ψ〉〈ψ|. It becomes

∑
b |ψ〉〈ψ|, whereb corre-

sponds to the parameters of the Alice’s subsystem. In the functional
formulation this is relatively straightforward. We obtain an opera-
tor, which in the case of simple entanglement is equal to1

2
1, and

in general, for a simple qubit averaged over:

bstate = qsum
[outer (psi ax)(psi ax)|ax<-map axis [B0,B1]]

whereqsum is a fold of<+>. If the implementation uses classical
data structures to represent states, the construction of mixed states
becomes clumsy. The reader should not consider this section as a
philosophical divagation irrelevant to the main topic of the paper:
the functional implementation of quantum entities. Its aim is to
show the strength of quantum constraints onany implementation.
If two subsystems interacted once, they will never be independent,
and the program must operate upon a global state, since the in-
teractionmayproduce entanglement. Our Haskell implementation
makes it clearly visible.

5. QUANTUM CIRCUITS

5.1 Some elementary gates
We have seen already some “gates” (operators) on single qubits,

such as the negation. From the Pauli matrices we can construct the
rotations, phase shifts, etc., but in order to be able tocompute, it is
necessary to have some multi-bit, or rather multi-qubit operators,
and some generic mechanisms to compose them. We know already
how to make tensor products, and we know that the operators form
a vector space.

The basic, and very strong requirement imposed on those gates
is their unitarity: A+ = A−1, which implies reversibility. This
means that a classical gate, say NAND which combines two bits-
arguments in one-bit result is an illegal operator, it does not corre-
spond to a physical evolution of a quantum system.

Thus, one can read sometimes that a legal operator must have the
same number of input and output lines. This is a slight trivializa-
tion of the problem, of course there are quantum processes which
create or annihilate particles, everything depends on the internal
structure of these “lines”. Two spins1/2 may transmute together
into one rotator with spin1. But for computing purposes, even
a 1-to-1 process, a 1-bit functionf(x) may be illegal if it is not
reversible. It has been shown (see e.g., [6]) that by adding extra
“ballast” lines with the extra data frozen, all functions may be con-
verted to bijections. For example, in order to construct an equiva-
lent of a XOR gate, we add one output line, which copies one input.
The result, whose standard graphical form is depicted on Fig. (5)
is called the “controlled-NOT” gate, corresponds to the transition:

|x〉

|y〉

Figure 5: Controlled-not gate

|x〉|y〉 → |x〉|x⊕ y〉, and has the following definition:

cnot kt ax ay = p B0 + p B1 where
p b = kt (qproj ax b) (xor (axis b) ay)



-- where
qproj ax b = ax b *> axis b
xor r = r B0 *> id <+> r B1 *> qnot

Notice that thesimulatedgate performs a measurement (filtering),
since it splits the state explicitly into two projections, and it is un-
avoidable.

5.2 Example: Deutsch problem
One of the simplest algorithms specific to quantum processing

is the solution of a toy problem proposed by Deutsch. Given an
unknown one-bit functionf(x) find as fast as possible whether the
function is constant,f(0) = f(1), or not. Classically it requires
two measurements. But if we manage to convert this function into
a quantum operator, it may be applied to a particular superposi-
tion of states|0〉 and|1〉, and return some answer in one step. (Of
course, this will need some filtering, but we have already accepted
the fact that on genuine quantum systems it takes no time; the “two
elementary applications” are executed in parallel. In a simulated
model we won’t obtain anything miraculous. We show this exam-
ple just as an illustration how to compute with our abstract vectors.
A more interesting example would be the Jozsa-Deutsch problem
which concerns not one qubit, but an-long quregister. This would
require the usage of general tensor products, but other technicalities
would be similar.

First, we will generalize the controlled-NOT gate to the operator

|x〉|y〉 → |x〉|f(x)⊕ y〉 . (7)

fcnot f k x y = p B0 + p B1 where
p b = k (qproj x b) (xor (axis (f b)) y)

This is the central processing module within the circuit which solves
the entire problem, and which is shown on Fig. (6). Two assigned

|0〉

|1〉

H

H

fHmeas.
scratch

Figure 6: Deutsch problem

input lines:|0〉 and|1〉 are processed first by Hadamard transforms
(the tensor products thereof, of course, as shown).

This part of the circuit takes the input into the combination

|0〉|1〉 → 1

2
(|0〉+ |1〉) (|0〉 − |1〉) (8)

=
1

2
(|00〉 − |01〉+ |10〉 − |11〉) . (9)

The central module applies the functionf . If it is constant, say
f(x) = 0 for all x, the state changes into

→ 1

2
(|00〉 − |01〉+ |10〉 − |11〉)

=
1

2
(|0〉+ |1〉) (|0〉 − |1〉) , (10)

and iff is, say the identity, then we will obtain

→ 1

2
(|00〉 − |01〉+ |11〉 − |10〉)

=
1

2
(|0〉 − |1〉) (|0〉 − |1〉) . (11)

In both cases thelower line remains the same, but the upper,x line
changes in a particular way. If we applyto it (the lower line is
scratched) the Hadamard transform again, forf const the outcome
is proportional to|0〉, and for the other case, to|1〉.

We will show the coding, but first a few words about the noncha-
lance of this derivation as seen from the programming perspective.
What kind of mathematical object representsf(x) in (7)? Is it a
configuration label (Hbase), suggested by its presence in a ket, or
a number0 or 1? In typical presentations this problem is never ex-
plicit, the authors put or extract numbers into, or out of kets without
any comments, they use “1” as anumerical index.

In our abstract framework we are constrained by the Haskell type
system, andf::Qubit -> Qubit . Actually, the functionf
cannotbe an operator on general quantum objects, it can do some-
thing only to a classical configuration, not to a superposition. We
define two such objects, a mutating and a constant functions:fmut
= id , andfcst = const B0 . The circuit is represented by the
following construction:

circuit f =
let in1 =

(boost2 ax_had ax_had) (ket B0 <*> ket B1)
in boost2 ax_had id (fcnot f in1)

xout = circuit id
yout = circuit (const B0)

It suffices to measure those last states: reduce e.g.

kmut = \ax -> xout ax arbitrary
kcst = \ax -> yout ax arbitrary

in order to find that if we freeze arbitrarily the second qubit (or if we
average over it, which does not change anything), then the reduced
states are proportional,kmut to |1〉 and kcst to |0〉. We have
shown that the functional framework permits to code in Haskelllit-
erally the mathematical description of the problem. For readers less
acquainted with quantum computing it serves also to show what
kind of problems may be treated by quantum circuits; our objective
is more pedagogical than technical.

5.3 Teleportation
This is another example of manipulation of compound, entan-

gled states, showing how to transmit an unknown quantum state
using two classical bits of information. The original state must be
destroyed in this process, it is known from thenon-cloning theo-
rem [31] that a quantum state cannot be copied, i.e., there is no
unitary operator which transforms, say,|0〉|φ〉 into |φ〉|φ〉, where
|φ〉 is unknown. The interest of this example is mainly illustrative,
although the relevant experiment has been performed with success.
Even if the hardware would permit to extend the physical proce-
dure to a macroscopic number of qubits, we would be very far from
Star Trek, since first the transmitter and the receiver would have to
be supplied with an adequate number of entangled units. Alice,
the transmitter, disintegrates and measures the unknown state using
her pool of entanglement resource, and sends the classical informa-
tion to the receiver. Bob exploits these data to construct a machine
which converts his entanglement pool into a copy of the transmitted
object. Suppose that a shared source produced an entangled state
|χ〉 = 1√

2
(|00〉 + |11〉) (called sometimes an axis of the Bell’s

basis), which can be done applying to|00〉 first oneHadamard op-
erator, and then acnot gate, as shown on the Fig. 7. Alice gets
one qubit from this pair, Bob another one. Alice possesses anun-
knownqubit, in a state|φ〉 = a|0〉+ b|1〉, so the state of the world
is |ψ〉 = |φ〉 ⊗ |χ〉. (Suppose that in a form|αβγ〉 the first two
labels belong to Alice). Alice applies to her sector the left part of



|φ〉

|0〉

|0〉

H

H

Rd

A|φ〉

Figure 7: Teleporting circuit

the circuit shown on Fig. 7, where the dashed line represent the
transmission of some classical information, which configures the
operatorA. (Of course nothing, i.e., the identity is applied to the
Bob’s part). It is easy to show that the state before the measurement
(“Rd”) becomes

|ω〉 =
1

2

(
|00〉(a|0〉+ b|1〉) + |01〉(a|1〉+ b|0〉)

+ |10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉)
)
. (12)

The measurement at Alice’s site produces one of four possible re-
sults, leaving the state in one of possible reduced forms|00〉, . . . , |11〉,
selecting thusa|0〉+b|1〉, toa|1〉−b|0〉. The simulator has to com-
pute all the reductions, and then to choose randomly one, with the
appropriate probability distribution. The choice 1 of four means 2
bits of information. They drive the choice of the operator which
Bob will apply to his qubit (leaving the Alice sector alone):

1. The first case is the identity. Nothing to do, qubit may be
processed further.

2. In order to converta|1〉 + b|0〉 to the wished state, Bob ap-
plies theqnot operator.

3. The third statea|0〉 − b|1〉 needssigz , and finally

4. The last one requireswarp B1 B0 <-> warp B0 B1 .

(The formsqnot etc. should be lifted from the domain of axes to
kets.) The numerical answer confirms only that an effective proce-
dure which mirrors the derivation on paper, can be coded in very
few lines. We begin by introducingk0=ket B0, k1=ket B1 ,
and choosing some values fora andb. Then we construct the en-
tangled state through the first par of the circuit, and we multiply it
tensorially by the “unknown” state:

phi = a*>k0 <+> b*>k1
psi = phi<*>(cnot.boost_2 ax_had id) (k0<*>k0)

Now we have to apply the upper leftcnot gate, followed by the
Hadamard operator. This is not obvious yet, since we know how
to apply a binary gate to a binary ket, and here we have 3 lines.
The Fig. 8 at the left would be an easier case. Ifop2 is a bi-

Figure 8: Two non-factorizable circuits

ket operator:op2 kt = \ax1 ax2 -> ... , its embedding

into op3 which takes 3 lines would be:op3 kt = op2 . kt .
Our situation corresponds to the right diagram on Fig. 8, and we
need to extract formally from a 3-ket its first two-sector:

\ay1 ay2 -> kt ay1 ay2 ax3

fixing the third line toax3 . This can be done with a combinator
applied to a function of three arguments, which flips their order,
putting the third one at the front:flip3 = flip . (flip
.) . The destructor gate applied by Alice acts in a following way,
producing the stateomega given by the eq. (12):

cnot3 kt x1 x2 x3 = cnot (flip3 kt x3) x1 x2
omega = boost_3 ax_had id id (cnot3 psi)

The rest is just the measurement, and the reconstruction according
to the variant instantiated by Nature (or by a random-number gen-
erator). The presence of fixed-arity combinators such asflip3 is
not nice, unfortunately the Haskell structure, its type system with
the multiparametric classes makes it difficult to construct a general
argument-permuting functionals for any arity, although it permitted
to form general tensor products in an elegant way. Again, templates
might be helpful here.

In this introductory paper we cannot show more elaborate exam-
ples. The constructions are not always readable, especially for
computer scientists not familiar with the formal structure of quan-
tum mechanics, but for others it might appeal by its “natural flavour”,
and they are fairly straightforward (although calling them an under-
graduate exercice would be a mild exaggeration. . . ). We underline
that the idea is not to show some cute programming tricks, but to
throw a bridge between the formalism of quantum mechanics and
its representation within a functional program.

6. CONCLUDING REMARKS
It is difficult to say when we will have working quantum comput-

ers, but we are convinced that the paradigms of functional program-
ming constitute a sound basis for their modelling, understanding,
and also, in some possible context — their programming.

In this, preliminary work, we propose an abstract geometric frame-
work permitting to define standard quantum entities as implemen-
table functional objects. The level of abstraction is so high that we
can offer a common style for the simulation of quite different quan-
tum systems, and yet propose an effective coding, permitting to
obtain some numerical results. Moreover, this genericity together
with the strong typing discipline makes it more difficult to intro-
duce errors in the program.

We believe, and we wanted to show that a modern, strongly typed
and polymorphic functional language seems actually to be a fasci-
nating tool for the implementation of quantum structures, although
the Haskell type system seems a little too rigid, which makes it dif-
ficult to write functions acting on tensor products of arbitrary arity.
As we mentioned, the template extensions might be helpful, per-
mitting to work onsyntactic formsas other people do on registers:
pairs and lists.

Shall it be considered a practical tool for the simulation of quan-
tum circuits? Probably notyet, our representation is more costly
than the techniques based on arrays, the computations are more in-
direct. But it is “honest” in the sense that it is more difficult to
violate the integrity of the simulated structures, to perform opera-
tions illegal from the quantum measurement perspective. This is
good for the mental discipline of the programmer, and may provide
a sound way ofrepresenting/simulatingin the classical module of
a future quantum computer its truly quantum parts.



On a conceptual note: in a more disciplined terminologystates
are not measured, they exist as a context for measuring the ob-
servables by providing a way to compute the averages〈ψ|Â|ψ〉.
“Measuring the state” means that the concerned observable is a
projector on some basis. Butstates and observables are not inde-
pendent entities.We may write the Schrödinger equation describ-
ing the state evolution in time:|ψ〉 → Û(t)|ψ〉, but this is con-
ventional, in the so called “Heisenberg picture”[19] the states are
never modified after their initial preparation; only the observables
evolve with time. Since the only physically meaningful quantity
is a bracket〈ψ|Û+ÂÛ |ψ〉, we may attribute the evolution to the
operator:Â→ Û+ÂÛ .

Thus, quantum states aremuch more abstract than their classical
counterparts, and we hope that our representation underlines well
this feature. The states include — through the possible measure-
ments — several “virtual” possibilities, not always observed, like
functions which may be, or not, applied to some arguments. States
cannot be implicit, in a quantum reality it is very difficult to spec-
ify what a “side-effect” could mean. . . It is tempting to conjecture
that the functional vision of quantum entities may be more closely
related to the essence of Nature than the imperative models, with
their explicit data structures, manipulated and modified at will.
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