
Geometric Modelling in Functional Style

Jerzy Karczmarczuk

University of Caen, France

Abstract. Modelling of 3D objects is a venerable subdomain of the applied geometry, too often coded in a
crude way, with elegance sacrificed for the sake of efficiency. We propose to exploit the modern lazy func-
tional programming to generate 3D surfaces, insisting upon the genericity of the underlying mathematics.
We show how to generateeasily the generalized sweeps thanks to the algorithmic differentiation proce-
dures. The interest of this paper is mainly methodologic, but all solutions are practical, although they are
extremely short. We show a simple but decent technique of parametrizing curves through their chord-length,
using lazy series development. The relation between functional programming methods and the computer
graphics world is concisely reviewed.

1 Introduction

Being well adapted to the manipulation of abstractions, functional languages bridge the gap between the com-
puter codes, and the realm of formal mathematical objects. This gap is still excessive, and may be harmful.
Such is the situation in the field of image synthesis and modelling, where for efficiency programs use several
optimization tricks not always easy to explain, and where the portable representations of 3D objects are often
of very low level (B-representation: lists of vertices which form polygonal surfaces, e.g. the DXF, OOGL or
NFF formats.)

On the other hand, a high level, linguistic description of 3D objects is not effective. We might writecylin-
der with some parameters in, say, VRML, but this is just asymbolicrepresentation, which will be parsed, put
into the correspondence with an internal object, transformed, converted into a mesh or an equation adapted
for a ray tracer, and then rendered. The union or intersection of volumes within the CSG formalism are also
symbolic descriptions. Again, for teaching purposes this is too superficial, as it doesn’t say anything about how
to make a modeller or a renderer, the distance between the descriptive entities and their semantics is too long.

We try here to advocate a purely functional approach for representing rendered objects and scenes. The
surfaces will be represented directly by their equations, implicit:F (x) ≡ F (x, y, z) = 0, or parametric:
x = x(u, v), depending on the rendering schema. We shall heavily use the higher-order functions to repre-
sent extrusions and other generalized sweeps, and we show how the usage of the algorithmic differentiation
techniques (see [1, 2], and references therein, mainly [3]) might simplifyenormouslythe manipulation of tan-
gents to trajectories, normals to surfaces, deformations, etc. We present a small, pedagogic graphic modelling
package implemented inConcurrent Clean [4]. Our objectif is to show how to exploit laziness, higher-order
functions, polymorphism, etc., and the possibility to code geometric objects in agenericway, at a high level of
abstraction, and independently of the concrete coordinate system.

We are interested more in thegenerationof the geometrical objects than in their staticrepresentation. This
is far from being a first attempt to apply the functional methodology in the field of graphics and modelling. P.
Henderson in [5] gave a functional description of pictures and their generation, and in [6] offered an elegant
functional approach to 2-dimensional recursive geometric objects. In 1987 people noticed [7] the applicability

of functional methods to hierarchic decomposition of graphical objects, and in 1990 D. Sinclair [8] has shown
how the functional paradigm facilitates the construction of the CSG trees. Slightly later a more comprehensive
paper [10] on the subject has been written, and followed by others, e. g. [11]. See also more recent papers on
the functional approach to animation, e. g. [12], or [13]. A slightly similar philosophy to ours, although using
very different techniques, has been presented in [14].

1.1 Example

The Fig. 1 shows a visually simple, but structurally intricate deformation of a vase constructed as a parametric
revolution surface. Ifv(s) is a parametric curve representing a vertical path along the surface, the vase at the
left is given byx(φ, s) = R(φ)v(s), whereR is the rotation operator parametrized by the angleφ. Any

Fig. 1.A Revolution Surface and its Distortion

classical modeller will apply a similar formula, although it willbeginby discretizing the generating curve, and
constructing the mesh by the rotation of the vertices. The deformations become then difficult, because usually
a different precision is needed. In our approach we construct from the basic surface in its functional form
a different, oblique generator by cutting the surface by a non-vertical plane, and we compose the rotational
sweep operatorR with a periodic rescaling, which ondulates the surface. All this requires 5 lines of code. The
discretization and rendering comes after.

2 Principal Data Types and Mathematical Entities

2.1 The basics

We assume that the reader is able to follow the basic syntax of a typical functional language. The specificities
of Clean used here are rare. The first thing we will do is to declare generic 3D vectors as a new datatype:

:: Vec a = V a a a which definesVec as a record with three fields ofarbitrary typea. This gener-
icity is needed mainly because the components will be not only numeric; they may also belazy differential
chainsexplained in the next section, which represent expressions together withall their (scalar) derivatives
needed to compute tangents to trajectories, normals, etc. Obviously, in order to define the vector algebra, the
type system ofClean will require that the component typea admit the standard arithmetic operations (over-
loaded). Then the typeVec is an instance of the standard arithmetic operations as well. The scalar(.*.) and
the vector(/\) product are defined naturally, for example

(/\) infix 7 :: (Vec a) (Vec a) -> Vec a | *, - a
(/\) (V x y z) (V a b c) = V (y*c-z*b) (z*a-x*c) (x*b-y*a)

The first line of the declaration above is the type speification,(/\) is an infix operator acting on two vectors,
and returning a vector. Their componentsmusthave the subtraction and multiplication defined. The vector
manipulations inherit the overloading, which permits to lift vector operations to vector functions. We define also
another overloaded operation (admittedly not very fascinating) – a multiplication of a vector by its associated
scalar:(*>) , which exploits the constructor classes inClean:

class (*>) infixr 7 t :: a (t a) -> (t a) | * a
instance *> Vec

where (*>) a (V x y z) = V (a*x) (a*y) (a*z)

The class declaration means that(*>) may be defined forany “container” type whose components may be
multiplied. Later on we will use a similar operator for the power series. A similar division(>/) is defined
also, so we can define the normalization. Also: the component extraction, rotations, conversion to quaternions,
and whatever you can think of, including the projective (homogeneous) representation, which we shall not use
in this paper. Although the reader will be hardly impressed by the 3D rotation formula, we present it here
for training. Here it is, the rotation of the vectorv about the axisn by the angleφ in a generic, coordinate-
independent style

vrot n phi v
vpar = (v.*.n)*>n // parallel projection; doesn’t change
vort = v - vpar // perpendicular component; 2D rotation
= vpar + cos phi *> vort + sin phi *> (n /\ vort)

The# symbol inClean introduces local assignments.

2.2 Some surface generators

The most universal methods of obtaining parametric surfaces is by sweeping: displacing one curve called
the generatoralong a specific trajectory (the director), composed eventually with other transformations. The
classical extrusionx(s, t) is a translational sweep byt of v(s), where the director is a straight line defined by
its directionn, a normalized vector.

stransl fgen n s t = fgen s + t *> n // n is the axis

// Example
gen s = V (4.0*cos s) (4.0*sin s) (0.4*sin(8.0*s))
ax = normalize (V 1.0 1.0 2.0)
surf1 = stransl gen ax

In order to rotate a curve about an axis, we need only to parametrize the rotation procedure, which is a one-liner.
Here the trajectory is a parametrized vector.

srevol f n s phi = vrot n phi (f s)
// Example
gen s = V (2.0 + 0.1*cos(12.0*s)) s (2.0*s)
ax = normalize (V 0.4 0.0 1.0); surf2 = srevol gen ax

The examples are shown on Fig. 2 In order to plot a parametric surface we sample it creating a grid, and then

Fig. 2.Extrusion and Rotational Sweep

plot the result using an adequate projection, and some hidden-line removal techniques, Phong interpolation,
and other rendering tricks which have nothing to do with modelling. A generic projection of a vectorp on
a plane given by the implicit equationa · x = d is the pointp0 = p − (a · p − d)a. In order to use the
Clean graphical output, the resulting points are transformed to standardClean 2D Vector s by rejecting one
superfluous coordinate (parallel toa), choosing the planar orientation, rescaling and rounding. The wire-frame
plot without the hidden-line removal is trivial. More elaborate schemas are quite elegant, but irrelevant for the
picture generation, so actually we check the generators by pipelining the sampled grids to an external renderer,
planning in the future to attach the OpenGL rendering procedures to theClean (or Haskell) code. In their
actual versions these languages arenotadapted for image synthesis.

2.3 Splines

Almost all serious manipulations of a model represented by the discrete mesh force the modeller to interpolate
the points using e. g. Catmull-Rom splines for the contours, NURBS for the surfaces, etc. But we can easily do
that once at the beginning of the modelling. A cubic polynomialv(t) which passes through the segment of 4
points, and interpolatesp0 andp1 for t ∈ [0, 1] is given by

splseg pm p0 p1 p2
c=0.5*>(p1+pm)-p0
d=(p2-p0-4*>c+pm-p1)>/6
=(\t -> p0 + t*>(0.5*>(p1-pm)-d+t*>(c+t*>d)))

and the generator of the spline function spanned byp0, p1,. . . ,pn constructs iterativelya list of spline segments,
returning the function which selects the appropriate one. Then it is straightforward to generate manually a nice
spline representing the axial cross section of a sea-shell presented on Fig. 3, and composing the rotation with
the homothetic rescaling byexp(aφ) whereφ is the rotation angle produces in no time the Fig. 4.

Axis z

R

Fig. 3.Sea-shell Generator

3 Lazy Differentiation, Tangents and Tubes

3.1 What is Algorithmic Differentiation?

Although many people think that the differentiation is ananalyticoperation, whose concrete implementation
requires either the numerical approximations or some symbolic formula manipulation, it is known that the issue
is strictly algebraic, and everything can be done within the – augmented – local algebra of arithmetic operators.

We just sketch the one-dimensional case (trivially generalizable). We need only the existence of one addi-
tional linear operator, thederivation d, which acts effectively on normal expressions, and fulfills the Leibniz
rule:d(u · v) = u ·d(v)+d(u) · v. For “normal” numbersd yields zero, they are differential constants. In order
to construct a non-trivial instance of such an algebra, we introduce a new data type which generalizes numbers,
but we shall never do any symbolic manipulations.

Fig. 4.Generalized Rotation

Our program will manipulate data which structurally are infinite sequencesz = [z0, z1, z2, . . .]. The stan-
dard numbers, i. e. the explicit constants, say,c in the program are equivalent to sequences[c, 0, 0, 0, . . .] (in
practice we shall use different, specific constructor, not the normal list, the type

:: Diff a = C a | D a (Diff a) // a: usually a Real

where the tagC is used for constants, and the recursive case generates an infinite co-recursive sequence. We
assume that the reader is acquainted with the lazy semantics which permits such construction even without
the variant(C a)). The second and further elements of this sequence are theextensionalderivatives of the
expression. Thedifferential variablex, which in a normal program is just a numeric value, here will have the
form [x, 1, 0, 0, . . .] (coded by a special function asdVar x = D x (C 1)). This is a nameless object, a
generator of the differential algebra.

Now, if we have two expressions-sequencesu andv belonging to this algebra:u = [u0, u
′, u′′, u(3), . . .],

andv = [v0, v′, v′′, v(3), . . .], which we might syntactically represent as listsu = [u0 : up], andv = [v0 : vp],
then the following definitions hold:

u+ v = [u0 + v0 : up + vp], etc., (1)

u× v = [u0 × v0 : up × v + u× vp], (2)

u/v = [u0/v0 : (up × v − u× vp)/(v × v)], (3)

exp(u) = w where w = [exp(u0) : w × up], (4)
√
u = w where w = [

√
u0 :

1
2
(up/w)], (5)

log(u) = [log(u0) : up/u], etc. (6)

In such a way any “normal” numeric function in our program, which is finally defined through standard arith-
metic operations, is easily lifted into the differential domain, which is closed. The user defines in his program

a numeric functionf composed of constants, ofthevariable, and of standard arithmetic operations. When this
function is applied as follows:f([x, x′, . . .]), it yields [f(x), f ′, f ′′, . . .]: the value of the expression together
with all its derivatives “for free”. The essential part of the full package is very short, it is just the translation of
the formulae above, coded within the framework ofClean type classes.

Codingx exp(−x2) wherex = D 0.5 (C 1.0) gives the infinite sequence: 0.3894004, 0.3894004,
-1.947002, -0.3894004, 15.96542, etc. without further coding chores. The essential properties of the presented
framework are the following:

– The derivatives are computed numerically, and point-wise, there are no symbolic manipulations.
– We don’t compute derivatives offunctions; everyexpression(a piece of data) drags with it, a chain of all

its derivative forms with respect to the givenvariable. This is a trivial point, but sometimes delicate to
explain. . .

– The technique is algorithmically efficient, exact (with the machine precision, as the “main” computation),
and stable: no specific error propagation takes place.

– It is almost fully automatic, and easier to use than any other differentiation method. The derivation operator
is trivial, it is just the tail of the sequence:df (C _) = C 0 , df (D _ p) = p . The gap between
the “analytic” operations and the generation of the numerical code is shortened to zero.

– In order to code it efficiently, all the expressions should be composed out of overloaded operators: if we
want to multiply the lifted expressions, the basic domain must admit the multiplication and the addition.
Also – in Clean – the constants should be overloaded (fromReal...), but in the enclosed programs
we have simplified this.

3.2 Tangents and normals

We see now the interest of having polymorphic vectors. Their scalar derivatives are given by

instance df Vec a | df a // We say that vectors are differentiable
where

df (V x y z) = V (df x) (df y) (df z)

and the (unnormalized) tangent to a vector which is the outcome of some parametric calculus, is constructed
by extracting from such a lifted vector its “main value” (i.e. the heads of the 3 differential chains for the
components).

For our work we shall need some more elaborate tools, as can be seen in any book on geometric methods
applied to the modelling, e. g. [15]. Of course, if we have a parametric vector function representing a trajec-
tory, sayv s = V (cos s) (sin s) s , the constructiong s = v (dVar s) generates the curvev
together withv′, etc. In order to get the normal to the curve, and its associated curvature, it is necessary to intro-
duce the length parametrization, as forv(t) the normalized tangent ist = dv/ds, whereds/dt =

√
(dv/dt)2.

Thenn = dt/ds. The following procedure computes the normalized tangent and the normal (whose length is
the curvature) from a parametric vector lifted into the differential domain.

frenet v
utn = df v // Unnormalized tangent
nrv = vnorm utn // Its norm
tn = utn >/nrv // Tangent
nrm = df tn >/ nrv // Normal
= (vget tn, vget nrm)

where(vget v) retrieves the main values from the differential vector domain. Of course, the third component
of the Frenet frame, the sometimes useful binormal vector is the vector product of the tangent and the normal.

The presented technique is simple to apply, the user should however be careful about the type system.
In Clean such a linear trajectory:lin s = 2.0*s cannot be lifted to the differential domain, one should
write lin s = fromReal 2.0 * s . In Haskell all numerical constants are by default overloaded, and
the programming is slightly easier.

3.3 Transport of curves along trajectories

We are ready to construct a fairly generic sweep, where the generating curve followsanytrajectory (producing
a generalized cylinder, or a “tube”). The generator gets translated along the trajectory, but it also rotates, so
that its orientation keeps pace with the tangent to the director. As an extra bonus we might include in the
procedure an additional arbitrary transformation undergone by the generator: it might be a screw-like rotation,
or rescaling, which may produce very flexible objects, for example the awful knot shown on Fig. 5. (For those
readers whose experience with knots is strictly practical: its director is a projection of a simple torusT (θ, φ)
with θ = (2/3)φ.) We have thus to establish the orientation of the generator, usually a vector orthogonal to its

Fig. 5.Generalized Tube

plane. For an arbitrary spatial generating curve in general this is conventional, and for simplicity we add this
orientation vector as an external parameter, but for planar curves it suffices to compute its binormal. We shall
need only one new function which finds the rotation axis and the angle needed to align a vectoru along another
(normalized) vectorn. The rotation axis isa = u ∧ n, the norm of this vector gives directly|u| sin(φ), and
cos(φ) is obtained fromu · n/|u|.

Then, in order to sweep the generatorg(s) (with its orientation vectoru) along a trajectoryh(t), the
trajectory is lifted to the differential domain, and for everyt, u is aligned with the tangent. The generator is
rotated using the alignment parameters, and the result is translated byh(t), altogether less than 10 short lines
of code.

The transformations can be arbitrarily composed. The parametric form lifted into the differential domain, can
be easily deformed, for example by scalar bumpsf(x(s, t)), as the normals to the surface are there “for free”,
and such a warp is defined byx(s, t)→ x(s, t) + n(s, t)f(s, t). This requires the usage of partial derivatives,
which doesn’t need anything new, it suffices to lift only one of the two surface parameters, and to retrieve
the appropriate derivative. The resulting furmulae are simple, but the program is a little messy. The study
of deformations, as well as the differential analysis ofimplicit surfaces need a coherent multi-dimensional
generalization of our lazy differential algebra. This work is in preparation.

A piece of warning seems necessary here. Transforming/composing functions is compact and easy, but
might be very inefficient if a complex transformation is applied to the generators in order to generate a dense
grid. The “free form” curves and surfaces are often constructed from splines or cubic patches based on a limited
number of control points. In such cases it is preferable to transform the points first, and then to reconstruct the
curve.

4 Chord-length reparametrization of curves

The result of an arbitrary parametrization of the directorp(t) (and of the generator as well, but we want to
simplify the problem) spans a non-uniform grid. A uniform sampling int might be erroneous. The solution is
to parametrize the director by its arc lengths, defined by the normalization property of the tangent:|dp/ds| = 1.
We have

dp

ds
=
dp

dt

/
ds

dt
, and

ds

dt
=

√(
dp

dt

)2

. (7)

So, the running arc (or chord) length is given by

s(t) =
∫ t

(ds/dt)dt, (8)

and we see that its inversion:t = t(s) needed for the reparametrization ofp: p(s) ≡ p(t(s)) needed for the
construction of a uniform grid is usually a difficult problem. There is no simple and universal solution, and
many sophisticated algorithms have been proposed, together with the brute force (oversampling and numerical
integration).

The arc-length parametrization is useful for many different reasons, for example:

– The control set for often used splines, Bézier curves, etc. is usually very non-uniform. If the surface is
texture-mapped, and the sampling is based on this control set, the textures get severely distorted, which is
seldom satisfactory.

– In order to generate a smooth, constant speed animation, the trajectory should be uniformly sampled.
– Additionnally, an adaptativenon-uniformsampling is often needed, for example, the∆s between two

neighbouring nodes should be smaller if the curvature is large; it might be a monotonous function of the
absolute value of the normal.

It would be useful thus to possess a formalism to generate a general, not necessarily uniform chord parametriza-
tion. We propose a solution which is far from the “rocket science”, but which is easy, doesnot sacrifice the
efficiency nor the accuracy, and shows once more the marvels of the pure functional lazy coding, and extended
arithmetic. If the sampling points are generated incrementally (i. e. if the distance between the bounds of the
integral (8) is not too big, the first approximation for an equally-paced∆t is obviously∆s · (dt/ds) and this
we get for free when computing the tangent.

If the accuracy of the linear approximation is insufficient, it makes sense to represents(t) as a power series
in t, and to reverse this series, as explained in many textbooks, for example [16]. We sketch here the algebra of
lazy power series which has been implemented by us inHaskell, see [17], and converted now intoClean.

We introduce a new (unbound) list-like data structure, aformalpower seriesU(x) = u0+u1x+u2x
2+ . . .,

wherex is a dummy variable which will be replaced by a real value during the final numerical computation.
From the algebraic and structural point of view a series is another linear sequence symbolically denoted as
U = [u0 : u], but defined with another sequence constructing operator(:>) as

:: Series a = (:>) infixr 9 a (Series a)

Full arithmetic algebra is easily defined for our series:

(+) (x:>xq) (y:>yq) = (x+y) :> (xq+yq)

and the same for the subtraction. The multiplication by a scalar overloads(*>) , and uses the overloadedmap.
The multiplication and the division of two series,U = u0 +xu ≡ [u0 : u], andV = v0 +xv are algorithmized
as follows:

U · V = (u0 · v0) + x(u0 · v + u · v), (9)

U/V = w0 + xw where w0 = u0/v0, w = (u− w0 · v)/v. (10)

The term-wise differentiation (which has nothing to do with the algorithmic differentiation presented in the
previous sections, and is just a data transformation), and integration, are “zips ” with [1, 2, ..] either multi-
plied, or divided into. The integration needs another parameter – the integration constant, which makes the
algorithm lazily co-recursive, and permits several fascinating tricks, for example the computation of the series
exponential: ifW = exp(U), thenW ′ = W · U ′, andW = [w0 = exp(u0) :

∫
W · U ′dx]. All this is ex-

plained in [17], and numerous nontrivial examples are given. The reversal of the power series, i. e. the solution
t = w1s+ w2s

2 + w3s
3 + . . . of the equations = u1t+ u2t

2 + . . . is coded in 5 lines.
The arc lengths(t) is expressed as the power series almost immediately. When we have applied the gen-

erator function to the lifted value:p (dVar tp) (for t = tp, one given value which is our starting point),
we haveautomaticallyds/dt|tp

: s1, s2, s3 . . . wheres2 is the second derivative, etc. In fact, without doing
anything, we got the Taylor expansion ofs(t), as the series integration is trivial, with vanishing integration
constant (near zero∆s ∝ ∆t must hold). It suffices to zip-divide the sequence of derivatives by the factorials:

s(t) = s1t+
1
2
s2t

2 + · · ·+ 1
n!
sn + . . . (11)

with the boundary conditions(0) = 0. The value ofs1 is different from zero, otherwise there is a singularity.
If s1 is small and∆s big, and the series converges badly, this is not the fault of the algorithm, but a signal
that the curvature (and/or twist etc.) of the curve is too large, and the arc-length parametrizationwill behave
badly anyhow. In normal cases the convergence of the reversed series is very good, two to four terms are quite
sufficient, especially if the behaviour for large∆s is improved by Padéization.

The solution proposed in [17] consists in reducing the reversal problem to the composition of series:
U(V (x)), wherev0 = 0, soV = xV . We have

U(V) = u0 + xV
(
u1 + xV (u2 + · · ·)

)
, (12)

just an infinite, co-recursive formulation of the classical Horner scheme. Dividing (11) bys1 reduces the equa-
tion into a form

s = t+ u2t
2 + u3t

3 + . . . (13)

whose solution ist = s+w2s
2 +w3s

3 + But (13) can be rewritten ast = s−u2t
2−u3t

3− We know
thus thatt = sM , whereM is given byM(s) = 1− sM2 · (u2 + u3t+ u4t

2 + . . .) — just a composition of
U andt = sM multiplied byM2. Of course it is auto-referrent, which won’t prevent a lazy programmer from
sleeping.

The discretization becomes more involved, it is not amapanymore. For given∆s the trajectoryp(t) is sampled
at t0, ∆t is computed from its tangent, and the process iterates att0 + ∆t. The technique is reasonably fast,
adaptable, and quite cheap from the programming effort point of view.

5 Implicit Surfaces – Short Tutorial

We witness recently an important renewal of interest in the functional implicit representation of surfaces:
F (x) = 0, see [18, 19]. We cannot treat this topic here, but we will enumerate the properties of this ap-
proach, which evidently need a decent functional formalism to code iteasily. There is one delicate point — the
sampling of an implicit surface, the construction of a mesh, or the polygonization is much more involved, and
needs efficient random-access data structures.

One particularity of this representation is that it is fundamentally volume-, rather than surface-oriented.
The regionF (x) < 0 may represent the interior of the object, and the value ofF may be considered to be the
distance from the surface (under an appropriately chosen metric). This volume-orientation makes it especially
interesting for the CSG computations.

5.1 Constructions

The coding of the geometric primitives is very compact, and well adapted for theinvariant geometricparametriza-
tion. Here we see some examples:

1. The plane with normalA, distant byd from the origin:A ·x = d represents an infinite half-space “under”
the plane. In such a way there is anatural way to represent the polyhedra – through the intersection of
these half-spaces.

2. The sphere with radius R atx0: (x − x0)2 = R2. Now, there is no point in precising the location of an
object; it suffices to replacex by x− x0 in order to translate it.

3. The cylinder with the axisn and radiusρ: x2 − (n · x)2 = ρ2.
4. The cone with axisn, and the angle between the axis and the surfaceα: (n · x)2 = x2 cos(α)2

5. The torus with the axisn, and the radiiR andr : (R2 + x2 − r2)2 = 4R2
(
x2 − (n · x)2

)
.

But, as we have underlined before, the real power of functions is that we can combine and transform them. The
Boolean (CSG) compositions of implicit volumes are very compact, the beginning of the functional manipula-
tions of these objects date from the sixties, and works of Rvachev (who had no interactive computing tools to

make the drawings. . .). IfF1 andF2 represent two objects, thenmin(F1, F2) is their union, andmax(F1, F2)
– their intersection.

If we prefer the continuous, analytic formulations, more suitable to compute the normals or other differential
quantities, we may use – among many others – the following formulae:

F1 ∪ F2 =
1
2

(
F1 + F2 −

√
F 2

1 + F 2
2

)
(14)

F1 ∩ F2 =
1
2

(
F1 + F2 +

√
F 2

1 + F 2
2

)
, (15)

but, what is very useful, we can easily introduce the blending between the two surfaces by adding to the
formulae above a function which vanishes far from the intersection (F1 = F2 = 0), for example

d(F1, F2) =
a0

1 +
F1

a1

2

+
F2

a2

2 , (16)

which for two intersecting cylinders gives the Fig. 6. Many other combinations are possible, and in particular

Fig. 6.Blending of Implicit Surfaces

this is the preferred representation to define “blobs” or “metaballs” – soft objects whose surface is defined by a
fixed threshold of a “field”F (x). Adding two such fields produces a larger blob, sometimes connected, some-
times not, and a negative blob may create a hole within another. These objects are intensely used in modelling
animals, but they are rarely implementeddirectly in modellers, which do not operate upon dynamically created
functions.

5.2 Transformations and Deformations

In order to displace the surface points:x → R̂x, it suffices to renderF (R̂−1x). This transformation may be
the global translation or rotation of the entire object, but it may also depend onx, introducing for example the
twisting, tapering, local bumping of the surface, or its directional erosion/dilation:F → F (x + ζN), where
N is the normal to the surface atx. The construction of this normal is of course facilitated by our differential
data structures.

The CSG operations possess an unsuspected universality! In one-dimensional spacef(x) = (a− x) ∩ (x− b)
is a finite segment, andf1(x) ∩ f2(y, z) is a Cartesian product permitting to define extrusions. Passing from
Cartesian to polar coordinates defines the rotational extrusions, i.e. surfaces of revolution.

The 3D morphing between two objects is just an interpolation between the two corresponding functions;
we remind that for any fixed-grid representation this is a nightmare, unless the two polygon topologies are
identical.

6 Conlusions

There is no difficulty in finding useful modelling packages, but quite often such systems are rigid and not too
pedagogic. The data structures used are of low level, and the complexity of the procedures makes them more
appropriate – eventually – for a long-term individual learning than for teaching. The necessity to invest in
the high level, functional description of graphic entities has been recognized early, but the hiatus between the
formal specifications and concrete representations was always rather strong, and in the world of graphics the
knowledge of functional languages is limited. (Sometimes a decent theory has been elaborated only to guide
the implementation of a program in “C”, see e. g. [20]). On the other hand, the mathematics needed (for ex-
ample the (de)implicitization techniques, or the analytic computation of surface intersections) is sometimes so
heavy, that the algebraic, symbolic packages are used very intensely. In our opinion they are abused, for exam-
ple people who need the Gröbner basis computations, etc. oftendo not need analytic formulae at all(they are
horrible anyway. . .), they serve just to produce expressions inserted into a numerical program. But the “C” or
Fortran languages are too weak to process high-level mathematical entities, so one passes through their sym-
bolic form. Functional languages with their higher order functions, and polymorphic type system offer better
tools for designing and coding all kind of graphical entities, without losing from sight the underlying mathe-
matical discipline. The authors of theClean language have put already a considerable effort on implementing
interactive low-level graphic entities. The area seems very promising, and the work is in progress.

Such topic as interaction isa priori a different subject from the modelling, but, as noted in [21], a fixed set
of control points e. g. a static mesh, is often very cumbersome. If the modeller is able to represent a geometric
object as an infinitely malleable surface, and inserts a control point where the user clicks its surface (which is not
more difficult than the ray casting algorithm), it ismucheasier to specify, and to solve the constrained variational
optimization problems resulting from the user-triggered deformations. This necessity to adapt dynamically the
subdivisions of the surface grid to the actual context (local: the curvature, etc., but also external: the position of
the light sources) has been recognized a long time ago by specialists on the radiosity rendering.

Finally, slightly beyond the realm of modelling, but vital for the image synthesis: the generation of textures
and animation arepar excellenceapplication fields of functional methods. It can be seen not only in the current
literature, e. g. [22], but also in concrete, practical realizations which useScheme, as [23] and [24], much
older than mentioned already [13]. But a coherent, comprehensive approach still needs a good deal of work.
Ours is for the moment just a feasibility study.

References

1. Jerzy Karczmarczuk,Functional Differentiation of Computer Programs, Proceedings, ACM SIGPLAN International
Conference on Functional Programming, (ICFP’98), Baltimore, September 1998, ACM Press, pp. 195–203.

2. Jerzy Karczmarczuk,Lazy Differential Algebra and its Applications, Workshop, III International Summer School on
Advanced Functional Programming, Braga, Portugal, 12–18 September, 1998.

3. George F. Corliss,Automatic Differentiation Bibliography, published in the SIAM Proceedings ofAutomatic Differen-
tiation of Algorithms: Theory, Implementation and Application, ed. by G.G. Corliss and A. Griewank, (1991), but many
times updated since then. Available from thenetlibarchives (netlib@research.att.com), or by an anonymous
ftp to ftp://boris.mscs.mu.edu/pub/corliss/Autodiff

4. Rinus Plasmeijer, Marko van Eekelen,Concurrent Clean – Language Report, v. 1.3, HILT – High Level Software Tools
B. V., and University of Nijmegen, (1998).

5. Peter Henderson,Functional Programming, Application and Implementation, Prentice-Hall, (1980).
6. Peter Henderson, em Functional Geometry, Symposium on Lisp and Functional Programming, (1982).
7. F. W. Burton, John G. Kollias,Functional Programming and Quadtrees, Univ. of Utah, Dept. of Computer Science,

(1987).
8. Duncan C. Sinclair,Solid Modelling in Haskell, University of Glasgow Report, (1990).
9. Richard A. Bird, Philip L. Wadler,Introduction to Functional Programming, Prentice Hall, (1988).

10. Iain Checkland, Colin Runciman,Development of a Prototype Geometric Modelling System using a Functional Lan-
guage, University of York, (1992).

11. J. R. Dave, P. M. Dew,A Polymorphic Library for Constructive Solid Geometry, University of Leeds Report 94.25.
12. Kavi Arya,A Functional Animation Starter Kit, J. Funct. Prog.4, (1994), pp. 1–18.
13. John Peterson, Conal Elliott, Gary Shu Ling,Fran 1.1 Users Manual, (1998), and papers by Conal Elliot, (Microsoft

research).
14. John M. Snyder, James T. Kajiya,Generative Modelling: A Symbolic System for Geometric Modelling, Computer

Graphics26, 2, (1992), pp. 369 – 378.
15. Christoph M. Hoffmann,Geometric and Solid Modelling, an Introduction, Morgan Kaufmann Pub., (1989).
16. D. E. Knuth,The Art of Computer Programming, Seminumerical Algorithms, vol. 2, Addison-Wesley, (1981).
17. Jerzy Karczmarczuk,Generating Power of Lazy Semantics, Theoretical Computer Science187, Elsevier, (1997), pp.

203–219.
18. Shape Modelling and Computer Graphics with Real Functions,

http://www.u-aizu.jp/public/www/labs/sw-sm/FrepWWW/F-rep.html
19. A. Pasko et al.,Function Representation in Geometric Modelling: Concepts, Implementation and Applications, in

SIGGRAPH 1996 Course notes:Implicit Surfaces for Geometric Modelling and Computer Graphics.
20. An OBJ3 Functional Specification for Boundary Representation, ACM Conference, (1991).
21. William Welch, Andrew Witkin,Variational Surface Modelling, SIGGRAPH’92, ACM, Chicago, pp. 157 – 166.
22. D. Ebert, K. Musgrave, P. Peachey, K. Perlin, and S. Worley,Texturing and Modeling: A Procedural Approach, Aca-

demic Press Professional, (1994).
23. Spencer Kimball, Peter Mattis,GIMP: GNU Image Manipulation Program, http://www.gimp.org
24. Steve May,AL: the Animation Language, http://www.cgrg.ohio-state.edu/~smay/AL/

