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Abstract. We present an application of functional programming in the domain of
sound generation and processing. We use the lazy language Clean to define purely
functional stream generators, filters and other processors, such as reverberators.
Audio signals are represented (before the final output to arrays processed by the
system primitives) as co-recursive lazy streams, and the processing algorithms
have a strong dataflow taste. This formalism seems particularly appropriate to
implement the ‘waveguide’, or ‘physically-oriented’ sound models. Lazy pro-
gramming allocates the dynamical memory quite heavily, so we do not propose
a real-time, industrial strength package, but rather a pedagogical library, offering
natural, easy to understand coding tools. We believe that, thanks to their simplic-
ity and clearness, such functional tools can be also taught to students interested
in audio processing, but with a limited competence in programming.
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1 Introduction

The amplitude of a sound (for one channel) may be thought of as a real functionf of
timet, and it is fascinating how much structural information it may contain [1]. In order
to produce some audible output, this function must be sampled, and transformed into a
signal, and this is the basic data type we shall work on. Sound may be represented at
many different levels, and if one is interested in the structure of sequences of musical
events, chords, phrases, etc., there is no need to get down to the digital signal processing
primitives. It may seem more interesting and fruitful to speak about the algebra of mu-
sical events, music combinators, etc. This was the idea of Haskore [2], whose authors
used Haskell to define and to construct a whole spectrum of musical “implementable
abstractions”. Haskore deals with high-level musical structures, and consigns the low-
level, such as the interpretation of the MIDI streams, or the spectral structure of sounds
to some back-end applications, MIDI players or CSound [3].

We decided to use the functional approach for the specification and the coding of
this “low end” sound generation process. This is usually considered a highly numerical
domain involving filter and wave-guide design [4], Fourier analysis, some phenomeno-
logical “magic” of the Frequency Modulation approach [5], or some models based on
simplified physics, such as the Karplus-Strong algorithm [6] for the plucked string, and
its extensions. But the generation and transformation of sounds is aconstructivedo-
main, dealing with complex abstractions (such as timbre, reverberation, etc.), and it
may be based on a specific algebra as well. A possible application of functional pro-
gramming paradigms as representation and implementation tools seems quite natural.



Software packages for music and acoustics areveryabundant, some of them are based
on Lisp, such as CLM [7] or Nyquist [8], and their authors encourage the functional
style of programming, although the functional nature of Lisp doesn’t seem very im-
portant therein as the implementation paradigm. But the the interest of the usage of
functional tools in the DSP/audio domain is definitely growing, see the article [9], and
the HaskellDSP package of Matt Donadio [10].

We don’t offer yet a fully integrated application, but rather a pedagogical library
calledClarion1, in the spirit of, e.g., the C++ package STK de Perry Cook [11], but —
for the moment — much less ambitious, demonstrating mainly some models based on
the waveguide approach [4]. It has been implemented in a pure, lazy functional language
Clean [12], very similar to Haskell. Its construction focuses on:

– Co-recursive (lazy) coding of “data flow” algorithms with delay lines, filters, etc.
presented declaratively. This is the way we build the sound samples.

– Usage of higher-order combinators. We can define “abstract” instruments and other
sound processors at a higher level than what we see e.g., in Csound.

The dataflow approach to music synthesis, the construction of virtual synthesizers as
collections of pluggable modules is of course known, such systems as Buzz, PD or
Max/JMax [13–15] are quite popular. There is also a new sequential/time-parallel lan-
guage Chuck [16] with operators permitting to transfer the sound data streams between
modules. All this has been used as source of inspiration and of algorithms, sometimes
easier to find in library sources than in publications. . .

Our implementation does not neglect the speed issues, but because of dynamic
memory consumption the package is not suitable for heavy duty event processing. It
is, however, an autonomous package, able to generate audible output on the Windows
platform, to store the samples as.wav files, and to read them back. It permits to code
simple music using a syntax similar to that of Haskore, and to depict graphically sig-
nals, envelopes, impulse responses, or Fourier transforms. The choice of Clean has been
dictated by its good interfacing to lower-level Windows APIs, without the necessity of
importing external libraries. The manipulation of ‘unique’ unboxed byte arrays which
ultimately store the sound samples generated and processed as streams, seems suffi-
ciently efficient for our purposes. The main algorithms are platform-independent, and
in principle they could be coded in Haskell. The main purpose of this work is pedagogi-
cal, generators and transformers coded functionally are compact and readable, and their
cooperation is natural and transparent.

1.1 Structure of this article

This text can be assimilated by readers knowing typical functional languages such as
Clean or Haskell, but possessing also some knowledge of the digital signal processing.
While the mastery of filters, and the intricacies of such effects as the reverberation
are not necessary in order to grasp the essential, some acquaintance with the signal
processing techniques might be helpful.

1 We acknowledge the existence of other products with this name.



We begin with some typical co-recursive constructions of infinite streams, and we
show how a dataflow diagram representing an iterative signal processing is coded as
a co-recursive, lazy stream. We show the construction of some typical filters, and we
present some instruments, the plucked string implemented through the Karplus-Strong
model, and simplified bowed string and wind instruments. We show how to distort the
“flow of time” of a signal, and we show a simple-minded reverberator.

2 Co-recursive stream generators

A lazy list may represent aprocesswhich is activated when the user demands the
next item, and then suspends again. This allows to construct infiniteco-recursivese-
quences, such as[0, 1, 2, 3, . . .], coded asints = intsFrom 0 where intsFrom

n=[n:intsfrom (n+1)] , and predefined as[0 .. ] . Such constructions are useful
e.g., for processing of infinite power series [18], or other iterative entities omnipresent
in numerical calculi. The “run-away” co-recursion is not restricted to functions, we may
construct also co-recursivedata. The sequence above can be obtained also as

ints = [0 : ints+ones] where ones=[1 : ones]

provided we overload the(+) operator so that it add lists element-wise. Here the se-
quencesyn for n = 0, 1, 2, . . . will represent samples of a discretized acoustic signal,
and for the ease of processing they will be real, although during the last stage they are
transformed into arrays of 8- or 16-bit integers. Already with[0 .. ] we can construct
several sounds, e.g., a not very fascinating sinusoidal wave:

wave = map (\n -> sin(2*Pi*n*h)) [0 .. ]

whereh is the sampling period, the frequency divided by the sampling rate: the number
of samples per second. In order to cover the audible spectrum this sampling rate should
be at least 32000, typically it is equal to 44100 or higher.

In the next section we shall show how to generate such a monochromatic wave
by a recursive formula without iteration of trigonometric functions, but the essential
point is not the actual recipe. What is important is the fact the we have apiece of data,
that an infinitely long signal is treated declaratively, outside any loop or other syntactic
structure localized within the program. For efficiency we shall use a Clean specific type:
head-strict unboxed lists of reals, denoted by such syntax:[# 1.0,0.8, ...] .

3 Simple periodic oscillator

One of the best known algorithmic generators of sine wave is based on the recurrent
formula: sin(nωh) = 2 cos(ωh) sin((n − 1)ωh) − sin((n − 2)ωh), whereh is some
sampling interval, andω = 2πf with f being the frequency. One writes the difference
equation obeyed by the discrete sequence:yn = c · yn−1 − yn−2 wherec = 2 cos(ωh)
is a constant. One may present this as a dataflow “circuit” shown on Fig. (1). Herez−1

denotes conventionally the unit delay box.



Of course, the circuit or the sequence should be appropriately initialized with some
non-zero values fory0 andy1, otherwise the generator would remain silent. A Clean in-
finite list generator which implements the sequencesin(2πft) with t = n/SamplingRate
may be given in a typically functional, declarative style as

oscil fr = y where // DpiSR is2π/SR
omh = DpiSR*fr // (divisor: global SamplingRate)
y = [# 0.0 : v]

v = [# sin omh : ((2.0*cos omh)*>v - y)]

z−1 z−1

+ −

c

y

Fig. 1.Sine wave generator

The values0.0 = sin(0.0) and
sin(ωh) can be replaced by oth-
ers if we wish to start with an-
other initial phase. Note the cycle
in the definition of variables, with-
out laziness it wouldn’t work! The
operator(*>) multiplies a scalar
by a stream, using the standard
Map functional (overloading ofmap for [#] lists): (*>) x l = Map (\s->x*s) l ;
we have also defined a similar operator(+>) , which raises the values in a stream by
a constant, etc. The subtraction and other binary arithmetic operators have been over-
loaded element-wise for unboxed real streams, using the known functionalzipWith .
Some known list functionals such asmap, iterate or take in this domain are called
Map, Iterate , etc. This algorithm is numerically stable, but in general, in presence of
feedback one has to be careful, andknowthe behaviour of iterative algorithms, unless
one wants to exploit the imprevisible, chaotic generators. . . . Another stable co-recursive
algorithm may be based on amodifiedEuler method of solving the oscillator differen-
tial equation:̈y = −ω2y (throughẏ = ωv; v̇ = −ωy). We gety equal to the sampled
sine, withy=[#0.0:y]+a*>v ; v=[#1.0:v-a*>y] . A pure sinusoidal wave is not a
particularly fascinating example, but it shows already some features of our approach.

– As already mentioned, the sound signal is not a ‘piece of algorithm’ such as a
loop over an array, but a first-class data item, although its definition contains a
never-ending, recurrent code. We can add them in the process of additive synthesis,
multiply by some scalars (amplify), replicate, etc. The modularity of the program
is enhanced with respect to the imperative approach with loops and re-assignments.
Some more complicated algorithms, such as the pitch shift are also easier to define.

– We have anaturalway of defining data which rely on feedback. The coding of IIR
filters, etc., becomes easy. In general, lazy streams seem to be a good,readable
choice for implementing many ‘waveguide’ models for sound processing [4].

With the stream representation it is relatively easy to modulate the signal by an enve-
lope, represented as another stream, typically of finite length, and normalized so that its
maximum is equal to 1, it suffices to multiply them element-wise. An exponential decay
(infinite) envelope can be generated on the spot asexpatt r = Iterate ((*) r)

1.0 . Theparameterizationof an arbitrary generator by an arbitrary envelope is more
involved, and depends on the generator. But, often when in definitions written in this



style we seec*>s wherec is a constant, we may substitutem*s for it, wherem is the
modulating stream. Thus, in order to introduce a 5 Hzvibrato (see fig. 9) to our oscil-
lator, it suffices to multiplyv in {2*cos omh*>v} by, say,{(1.0+>0.001*>oscil

5.0))} , since the concerned gain factor determines the pitch, rather than the amplitude.
This is not a universal way to produce a varying frequence, we just wanted to show the
modularity of the framework. Some ways of generatingvibratoare shown later.

It is worth noting that treating signals as data manipulated arithmetically permits
to code in a very compact way the instruments defined through the additive synthesis,
where the sound is a sum of many partials (amplitudes corresponding to multiples of
the fundamental frequency), for example:

additive freq amplist = y

where

m = [1.0 .. toReal(length amplist)]

y = Foldl (+) zeros // an infinite stream of zeros
(map (\(n,a)->a*>oscil(n*freq)) (zip2 m amplist))

oboe fr= additive fr [0.0021,0.0237,0.1,0.0513,0.045,0.061,0.0168]

tuba fr= additive fr [0.10095,0.15732,0.14992,0.09895,0.07178,...]

Envelopes,vibrato, etc. effects can be added during the post-processing phase.

4 Some typical filters and other simple signal processors

A filter is a stream processor, a function from signals to signals,x → y. The most
simple smoothing, low-pass filter is the averaging one:yn = 1/2(xn + xn−1). This
can be implemented directly, in an index-less, declarative style, asy = 0.5*>(x +

Dl x) , whereDl x = [#0.0 : x] . If we are not interested in the first element, this
is equivalent toy = 0.5*>(x + Tail x) , but this variant is less lazy. This is an
example of a FIR (Finite Impulse Response), non-recursive filter. We shall also use the
“Infinite Response”, recursive, feedback filters (IIR), whereyn depends onyn−k with
k > 0, and whose stream implementation is particularly compact.

One of the standard high-pass filters, useful in DSP, the “DC killer”, 1-zero, 1-pole
filter, which removes the amplitude bias introduced e.g., by integration, is described by
the difference equationyn = b · (xn−xn−1)+a · yn−1, and constitutes thus a (slightly
renormalized) differentiator, followed by a “leaky” integrator, everything depicted in
Fig. 2. Herea is close to1, say0.99, andb = (1 + a)/2.

z−1 +

z−1

−b

a

yx

Fig. 2.DC blocker circuit

The effect of the filter on, say, a sam-
ple of brown (integrated white) noise
is depicted on Fig. (3), withb =
0.97, and the equivalent Clean pro-
gram is shown below, again, it is a
co-recursive 1-liner, where a stream
is defined through itself, delayed.

This delay is essential in order to make the algorithm effective; our code, as usually
in DSP, should not contain any “short loops”, where a recursive definition of a stream
cannot resolve the value of its head.



dcremove a (xs=:[# x0:xq]) = y where

y=a*>Dl y+((1.0+a)/2.0)*>(xq-xs)

Fig. 3.DC removal from the “brown noise”

The damping sensitivity, and losses are bigger whena is smaller. Note the differ-
ence between the diagram and the code: The delay and the multiplication byb have
beencommuted, which is often possible for time-independent, linear modules, and here
economises one operation. The parameter pattern syntaxa=: α is equivalent to Haskell
a@α, and permits to name and to destructure a parameter at the same time.

+ z−M + yx

b

−b

Fig. 4.An all-pass filter

Another feedback trans-
ducer of general utility is
an ‘all-pass filter’, used
in reverberation modelling,
and always where we need
some dispersion — differ-
ence of speed between var-
ious frequency modes. The
variant presented here is a combination of ‘comb’ forward and feedback filters, and it
is useful e.g. for the transformation of streams generated by strings (piano simulators,
etc.). The definition of a simple all-pass filter may be

allpass m b x = b*>z + v where

v = delay m z // Prepend m zeros to z
z = x - b*>v

5 The Karplus-Strong model of a plucked string

Finally, here is another sound generator, based on a simplified ‘waveguide’ physical
model [4]. A simplistic plucked string (guitar- or harpsichord-like sound) is constructed
as a low-pass-filtered delay line with feedback. Initially the line is filled-up with any
values, the (approximate) “white noise”: a sequence of uncorrelated random values be-
tween±1, is a possible choice, standard in the original Karplus-Strong model.

z−N

+ z−1
1/2

1/2

y

Fig. 5.Plucked string

On output the neighbouring values are averaged,
which smooths down the signal, and the result is
pumped back into the delay line. After some peri-
ods, only audible frequencies are the ones deter-
mined by the length of the delay line, plus some



harmonics. Higher frequencies decay faster than the lower ones, which is the typical
feature of the plucked string, so this incredibly simple model gives a quite realistic
sound! The implementation is straightforward, the only new element is the usage of a
finite-length segment and the overloaded concatenation operator(++|) .

karstr f = y where

prfx = Take (toInt (SR/f)) whitenoise

y = prfx ++| 0.5 *> (y + Tl y) // or more delayed: y+Dl y

The noise signal is a stream generated by an iterated random number generator. The
package disposes of several noise variants, brown, pink, etc., useful for the implemen-
tation of several instruments and effects.

A more complicated string (but equally easy to code from a given diagram), with
external excitation, some slightly detuned parallel delay lines, additional all-pass filters
etc., is used to simulate piano, harpsichord or mandolin, but also bowed instruments
(violin), and some wind instruments, since mathematically, strings and air columns are
similar. We shall omit the presentation of really complex instruments, since their prin-
ciple remains the same, only the parameterization, filtering, etc. is more complex.

Since a looped delay line will be the basic ingredient of many instruments, it may
be useful to know where the model comes from. Ify(x, t) denotes the displacement of
air or metal, etc. as a function of position (1 dimension) and time, and if this displace-
ment fulfils the wave equation without losses nor dispersion (stiffness):∂2y/∂t2 = c2 ·
∂2y/∂x2, its general solution is a superposition of twoany travelling waves:y(x, t) =
yr(x− ct) + yl(x + ct), wherec is the wave speed. For a vibrating string of lengthL,
we havec = 2f0L, wheref0 is the string fundamental frequency.

After the discretisation, the circuits contain two “waveguides” — delay lines cor-
responding to the two travelling waves. They are connected at both ends by filters, re-
sponsible for the wave reflection at both ends of the string (or the air column in the bore
of a wind instrument). Because of the linearity of the delay lines and of typical filters,
it is often possible to ‘commute’ some elements, e.g., to transpose a filter and a delay
line, and to coalesce two delay lines into one. One should not forget that an open end of
a wind instrument should be represented by a phase-inversion filter, since the outgoing
low-pressure zone sucks air into the bore, producing a high-pressure incoming wave.

6 Digression: how to make noise

A typical random number generator is a ‘stateful’ entity, apparently not natural to code
functionally, since it propagates the “seed” from one generation instance to another.
But, if we want just to generate randomstreams, the algorithm is easy. We start with
a simple congruential generator based on the fact that Clean operates upon standard
‘machine’ integers, and ignores overflows, which facilitates the operations modulo232.
It returns a random value between±1, and a new seed. For example:

rand1 seed

# seed = 599479 + seed*25781083

# r = seed bitand 2147483647

= (toReal r/2147483648.0,seed)



Despite its appearance, this is a purely functional construction, the# syntax is just a
sequential variant oflet, where the “reassignment” of a variable (here:seed ) is just
an introduction of a new variable, which for mnemotechnical purposes keeps the same
name, screening the access to its previous, already useless instance. We write now

rndnoise seed

# (z,seed) = rand1 seed

= [#z : rndnoise seed]

This noise can be used in all typical manipulations, for example the “brown noise”
which is the integral of the above “white noise” is just

brownnoise = z where z=Dl (rndnoise someSeed + z)

In the generation of sounds the noise need not be perfect, the same samples can be
reused, and if we need many streams it suffices to invoke several instances ofrnd-

noise with different seeds. It is worth noticing that in order to generate noise in a purely
functional way,we don’t need an iterative generator with propagating seed!. There ex-
ist pure functions which behaveergodically, the values corresponding to neighbouring
arguments are uncorrelated, they vary wildly, and finally they become statistically in-
dependent of their arguments. A static, non-recursive pure function

ergodic n

# n = (n<<13) bitxor n // Use let n’= . . . if you don’t like #
= toReal (n*(n*n*599479+649657)+1376312589)/2147483648.0

mapped through the list[0, 1, 2, 3, 4, . . .] gives the result shown in Fig. 6. We have also
used this variant of noise.

Fig. 6.An ergodic function

7 More general filters, and power series

We have seen that a simple recurrence, sayyn = b0 ·xn−a1 · yn−1 is easy to represent
as a stream (here:y = b0*>x - a1*>Dl y ), but a generalm-zero,l-pole filter:yn =∑m

k=0 bk · xn−k −
∑l

k=1 ak · yn−k would require a clumsily looking loop.
However, both terms are just convolutions. The DSP theory [17] tells us that they

become simple products when we pass to thez transform of our sequences. Concretely,
if we definex(z) =

∑∞
n=0 xnz−n, and introduce appropriate power series for the se-

quencesb, a = [a0 = 1, a1, a2, . . .] and y, we obtain the equationa(z) · y(z) =



b(z) · x(z), or y(z) = H(z) · x(z), whereH = b/a. The stream-based arithmetic oper-
ations on formal power series are particularly compact [18]. Element-wise adding and
subtracting is trivial, usesMap (+) andMap (-) . Denotingx = x0 + z−1x̄, wherex̄
is the tail of the sequence, etc., it is easy to show that

w ≡ (w0 + z−1w̄) = b · x = (b0 + z−1b̄)(x0 + z−1x̄) , (1)

reduces to the algorithm:w0 = b0x0, andw̄ = b0x̄ + b̄x.
The divisionw = b/a is the solution for[w0 : w̄] of the equationb = a · w, and is

given by the recurrencew0 = b0/a0 andw̄ = (b̄ − w0ā)/a. So, the code for a general
filtering transform isy = (b<*>x)</>a with

(<*>) [#b0:bq] a=:[#a0:aq] = [# b0*a0 : b0*>aq + bq<*>a]

(</>) [#b0:bq] a=:[#a0:aq] = [# w0 : (bq - w0*>aq)</>a]

where w0 = b0/a0

It was not our ambition to include in the package the filter design utilities (see [10]),
but since the numerator and the denominator ofH are lists equipped with the appro-
priate arithmetic, it is easy to reconstruct their coefficients from the positions of the
zeros, by expansions. But, since the division of series involves the feedback, the pro-
grammer must control the stability of the development, must know that all poles should
lie within the unit disk in order to prevent the explosive growth, and be aware that the
finite precision of arithmetics contributes to the noise. But the numerical properties of
our algorithms are independent of the functional coding, so we skip these issues.

8 More complex examples

8.1 Flute

One of numerous examples of instruments in the library STK of Perry Cook [11] is a
simple flute, which must contain some amount of noise, the noise gaing on the diagram
depicted on fig. 7 is of about0.04. The flute is driven by a “flow”, the breath strength,

∗

+flow

noise

+ emb. delay x− x3 +

bore delay

H y

g c1 c2

Fig. 7.A simple flute

which includes the envelope of a played note. There are two delays, the bore delay
line, which determines the period of the resonance frequency, and a two times shorter



embouchure delay block. The filterH is a reflection low-pass filter given byyn =
0.7xn + 0.3yn−1. The gain coefficients arec1 = 0.5, andc2 = 0.55. The code is short.

flute freq flow = w where

lpass1 x = y where y=0.7*>x + 0.3*>Dl y

nlins xs = Map (\x -> x*(1.0 - x*x))xs

u=0.04*>(flow*whitenoise) + flow

v=u+0.5*>p

p=tdelay (1.0/freq) w // delay parameterized by real time
w=lpass1 (0.55*>p + nlins (tdelay (0.5/freq) v))

An important ingredient of the instrument is the nonlinearity introduced by a cubic
polynomial. Välimäki et al. [19] used a more complicated model. They used also an
interpolated, fractional delay line, which is an interesting subjectper se.

8.2 Bowed string

In Fig. 8 we see another example of a non-linearly driven, continuous sound instrument,
a primitive “violin”, with the string divided into two sections separated by the bow,
whose movement pulls the string. Of course, after a fraction of second, the string slips,
returns, and is caught back by the bow. The frequency is determined, as always, by the
resonance depending on the string length.

Neck delay −1 +

+

Bridge delay Body

Refl.

+
−

−

∗ B.tbl

Bowing force

Fig. 8.A bowed string

bowed amp freq = y // amp is the bowing force
where

basedel = 2.0*SR/freq-4.0 // Base delay, split into neck and bridge
p = 0.6 - 2205.0/SR // Phenomenological filter pole position
bowv = (0.03+0.2*amp)*>ones // Max bow velocity; ones=[1,1,1,...]
brefl= ~(bridge p 0.95 brdel)

nrefl= ~(delay (toInt(0.872764*basedel)) (brefl+nvel)) // Neck
vdiff = bowv-brefl-nvel // Velocity difference; steering value
nvel = vdiff*Map bowtable vdiff

brdel= delay (toInt(0.127236*basedel)) (nrefl+nvel)

y = biquad 500.0 0.85 0.6 brdel // Output resonating filter



wherebridge is the bridge reflection filter, andbowtable — the non-linearity (it
could be table-driven, but here it is a local function). The functionbiquad is a filter.
They are defined as in the source of STK:

bridge p g s = y where

b0=(if(p>0.0) (1.0-p) (1.0+p))

y = (g*b0)*>s + p*>Dl y

bowtable x

# r=((abs(3.0*x)+0.75)^(-4.0))

= if (r<1.0) r 1.0 // Conditional clipping
biquad freq rad g s = y // Biquad resonating filter

where

a2=rad*rad

v = (g*(0.5-0.5*a2))*>(s - Dl (Dl s))

z = Dl y

y = v + (2.0*rad*cos (freq*DpiSR))*>z - a2*>Dl z

Now, in order to have a minimum of realism, here, and also for many other instruments,
the resonating frequency should beprecise, which conflicts with the integer length of
the delay line. We need a fractional delay. Moreover, it should be parameterized, in
order to generatevibrato (or glissando); we know that the dynamic pitch changes are
obtained by the continuous modification of the string length. Our stream-based frame-
work, where the delay is obtained by a prefix inserted in a co-recursive definition seems
very badly adapted to this kind of effects. We need more tools.

9 Fractional delay and time stretching

Some sound effects, such as chorus or flanging [20], are based on dynamical delay lines,
with controllable delay. For good tuning, and to avoid some discretisation artefacts is
desirable to have delay lines capable of providing a non integer (in sampling periods)
delay times. Such fractional delay uses usually some interpolation, linear or better (e.g.,
Lagrange of 4-th order). The simplest linear interpolation delay of a streamu by a
fraction x is of coursev=(1.0-x)*>u + x*>Dl u , where the initial element is an
artefact; it is reduced if we replace the 0 ofDl by the head ofu. Smith proposes the
usage of an interpolating all-pass filter, invented by Thiran [21], and co-recursively
defined as

ifractd x s=:[#s0:_] = v + a*>u

where

a=(1.0-x)/(1.0+x)

u = s - a*>v

v = [#s0:u]

This module should be combined with a standard, integer delay. But how to change
the big delay dynamically? The classical imperative solution uses a circular buffer



whose length (distance between the read- and write pointers) changes during the ex-
ecution of the processing loop. In our case the delay line will become a stream pro-
cessor. We begin with a simple, static time distortion. The functionwarp a x where
x is the input stream, anda — a real parameter greater than−1.0, shrinks or ex-
pands the discrete “time” of the input stream. Ifa = 0, thenyn = xn, otherwise
y0 = x0; y1 = x1+a; . . . yn = xn·(1+a), where an element with fractional index is
linearly interpolated. For positiveα: xn+α ≡ (1− α)xn + αxn+1. Here is the code:

warp a [#x0 : xq] = [#x0 : wrp a x0 xq] where

wrp g y0 ys=:[#y1:yq]|g>0.0 = wrp (g-1.0) y1 yq

=[#(1.0+g)*y1-g*y0 : wrp (g+a+1.0) y0 ys]

It is possible to vary the parametera, the package contains a more complicated pro-
cedure, where the delay parametera is itself a stream, consumed synchronously with
x. It can itself be a periodic function of time, produced by an appropriate oscillator.
In such a way we can produce thevibrato effect, or, if its frequency is high enough –
an instrument based on the frequency modulation. Moreover, if warp is inserted into
a feedback, e.g.,u=prefix ++| warp dx (filtered u) with a rather very small
dx , the recycling of the warpedu produces a clearglissandoof the prefix.

The technique exploited here is fairly universal, and plenty of other DSP algorithms
can be coded in such a way. If we want that a “normal” functionf from reals to reals,
and parameterized additionally bya, transform a streamx , we write simplyMap (f

a) x . Now, suppose that after everyn basic samples the parameter should change. This
may be interesting if together with the basic audio streams we havecontrol streams,
which vary at a much slower rate, like in Csound. We put the sequence of parameters
into a streamas , and we construct a generalized mapping functional

gmap f s n x = wm 0 s x where

wm k as=:[#a0:aq] x=:[#x0:xq]|k<n = [#f a0 x0:wm (k+1) as xq]

= wm 0 aq x

This may be used to modulate periodically the amplitude in order to generate the
tremoloeffect. A modifiedwarp function, parameterized not by a constant but by a
stream, if driven by an oscillator produces thevibratoeffect. They are shown in Fig. 9.

Fig. 9.Tremolo and vibrato

10 Reverberation

One of fundamental sound effects, which modifies the timbre of the sound is the com-
position of the original with a series of echos, which after some initial period during



which the individual components are discernible, degrade into a statistical, decaying
noise. A “unit”, infinitely sharp sound represented by one vertical line in Fig. 10, is
smeared into many. Fig. 10 corresponds to the model of John Chowning, based on the

Fig. 10.Reverberation response

ideas of Schroeder [22], see also [23]. The reverberation circuit contains a series of all-
pass filters as shown on fig. 4, with different delay parameters. This chain is linked to a
parallel set of feed-forward comb filters, which are “halves” of the all-pass filters. They
are responsible for the actual echo. Fig. 11 shows our reverberation circuit, whose code

AP0.7
0.03 AP0.7

0.008 AP0.7
0.003

FCF0.742
0.065

FCF0.733
0.075

FCF0.715
0.095

FCF0.691
0.125

+

Fig. 11.Reverberation module

is given below. It is simple, what is worth noticing is a compact way of representing the
splitting of a stream into components which undergo different transformations, as given
by the auxiliary functionalsumfan . The operatoro denotes the composition. Thanks
to the curried syntax of Clean, the definition of a processing module composed out of
elements linked serially and in parallel, doesn’t need the stream argument.

reverb =

schr 0.03 o schr 0.008 o schr 0.003 o

sumfan [fcf 0.065 0.742,fcf 0.075 0.733,

fcf 0.095 0.715,fcf 0.125 0.691]

where // fcf is a forward comb filter
fcf tm g x = x + g*>tdelay tm x // Time, gain, stream

schr tm = allpass tm 0.707 // Schröder allpass filter, below



sumfan l x

# [l1:lq]=map (\f->f x) l

= 0.25*>foldl (+) l1 lq

allpass tm b x = b*>z + v where // Co-recursive dispersion filter
v = tdelay tm z

z = x - b*>v

11 Conclusions and Perspectives

We have shown how to implement some useful algorithms for the generation and trans-
formation of sound signals in a purely functional, declarative manner, using lazy streams
which represented signals. The main advantage of the proposed framework is its com-
pactness/simplicity and readability, making it a reasonable choice toteachsound pro-
cessing algorithms, and to experiment with. We kept the abstraction level of the pre-
sentation rather low, avoiding excessive generality, although the package contains some
other, high-level and parameterized modules. This is not (yet?) a full-fledged real-time
generating library, we have produced rather short samples, and a decent user interface
which would permit to pameterize and test several instruments in a way similar to STK
[11] is under elaboration. The paper omits the creation of high-level objects: musical
notes and phrases, not because it has not been done, or because it is not interesting,
on the contrary. But this has been already treated in Haskore papers, and other rather
music-oriented literature.

Our package can compute Fourier transforms, and contains other mathematical util-
ities, such as the complex number algebra, and a small power-series package. It has
some graphic procedures (the signal plots presented in the paper have been gener-
ated with Clarion). We have coded some more instruments, as a clarinet, or a primi-
tive harpsichord. Clarion can input and output.wav files, and, of course, it can play
sounds, using the Windows specificPlaySound routine. We have generated streams up
to 2000000 elements (about one minute of dynamically played sound at the sampling
rate of 32000/sec.), and longer. In principle we might generate off-line sound files of
much bigger lengths, but in order to play sound in real time it is necessary to split the
audio stream in chunks. Our system uses heavily the dynamic memory allocation, and
the garbage collection may become cumbersome. It is also known that the temporal ef-
ficiency of lazy programs (using the call-by-need protocol) is usually inferior to typical,
call-by-value programs. We never tried to implement a full orchestra in Clarion. . .

Clarion remains for the moment rather a functional, but pedagogical feasibility
study, than a replacement for Csound or STK, those systems are infinitely more rich.
We wanted to show on a concrete example how the functional composition and lazy
list processing paradigms may be used in practice, and we are satisfied. This work will
continue.
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