
Functional low-level interpreters

Jerzy Karczmarczuk

Dept. d’Informatique, Université de Caen, France

karczma@info.unicaen.fr

Abstract. We show how to construct in a pure, lazy functional language Haskell
a low-level, FORTH-like (stack based, postfix style) virtual machine, used as a
target platform in our compilation course for computer science students. The im-
plementation is clear, reasonably efficient, and easily extensible. Two models are
presented: more “classical”, with a separate return stack, and an interpreter based
on the continuation-passing style. The idea, although traditional, was a bit ex-
perimental, since this was the first contact of our students with Haskell and with
advanced functional techniques. We exploited thus this course to teach also those
techniques, on a comprehensive and conceptually coherent set of examples.

1 Introduction: Teaching Compilation Functionally

Users of functional languages in a pedagogical context usually insist on a good balance
between formal discipline, regularity and capacity to build abstract models, and the clar-
ity and conciseness of concrete, practical codes, their syntactic and semantic simplic-
ity. In our opinion those concrete, applicative examples treated as a vehicle conveying
the paradigms of functional programming are often better than a dedicated “language”
course. They help to neutralize the popular “curse” of FL: to be good for teaching, but
not so useful for a practical work. Thus, we used functional languages to teach image
synthesis, and computer graphics in general, and we decided to teach compilation using
Haskell as the main implementation tool as well.

Compilation — as seen from this point of view — is an ambiguous domain. We
know that the analysis and the modelling of syntactic structures is very well adapted to
functional treatment. Parser combinators [1, 2] implemented in a typed functional lan-
guage are wonderful tools permitting tounderstandthe syntactic analysis much easier
than through classical techniques proposed in the Dragonbook [3], or in books of An-
drew Appel [4]. The laziness is an invaluable tool to process the semantic attributes (the
flows of synthesized and inherited attributes are antithetic, and sometimes it is useful
to be able to deal easily with cyclic dependencies). The typechecking, the generation
of intermediate, arborescent code — all this ispar excellencefunctional, at least at the
presentation level.

The administration of dynamic environments and the low-level, back-end code is
usually much “less functional”. If a teacher who cannot during a one-semester course
construct a fully-fledged native code compiler, gets satisfied with some assembly-style
pseudo-codes, or uses C as the target language, his students might get discouraged from

FP, since the “real work” needsfinally an imperative language. . . The fact that profes-
sional compilers such as Glasgow Haskell, or Clean have been designed and coded in
Haskell or Clean [5, 6], will not help typical students, since the hiatus between teaching
introductory compilation and building industrial-strength compilers is still quite wide.

We decided thus to try a little pedagogic experience, to teach compilation with
Haskell (initially unknown to students!), beginning with the analysis of the source, and
ending with the execution of the compiled (or hand-assembled) programs1. It was not
our aim to teach the compilationof functional languages, but something more ortho-
dox, and rather simple. For the compilation of functional languages we suggested the
very abundant literature, e.g., [7–9]. The presented material is a (modified a little) frag-
ment of the compilation course delivered to the 4-th year (Maîtrise) computer science
students at the University of Caen. Our students knew Scheme and some imperative
languages, and they were competent enough to accept any not too exotic algorithmic
construction.

We wanted to show that the construction of low-level, assembly- (or FORTH/Post-
script) style, stack-based, reasonably efficient virtual machines is quite straightforward
and readable. This readability is largely due to the abstraction facilities of Haskell,
notably the higher-order functions.

We exploited the laziness of the language in order to simplify the deployment — the
implementation and its presentation — of the “non-linear” low-level code, containing
branching (conditionals and loops). Of course, every virtual machine must be anchored
on its implementation language and the related run-time support. We made it clear that
the usage of Haskell, which provides not only the memory management, but offers the
tail recursion and functional composition, facilitates the construction of generic entities
through currying and other higher-order constructs, etc., is extremely advantageous for
learningthe construction of low-level code structure.

1.1 Why interpreters?

While nobody claims that in last 15 years the teaching of compilation has undergone
a significant revolution, the importance of “small”, interpreted, often embeddable lan-
guages: Ruby, PHP, Python, Javascript, etc. grows fast, embedding small virtual ma-
chines into all kind of applications became explosively popular, and the construction of
interpretersmustbe taught. They provide a useful, hardware-independent, but concrete
target platform for a typical compilation course. While a typical computer-science stu-
dent will probably never produce a full, native code compiler, chances that he/she will
need some scriptable applications, equipped with “intelligent” linguistic interfaces, are
fairly good.

Our interpreters should handle codes generated by smallintegratedcompilers (the
code is not designed to be loaded from external sources), and provide some reasonable
compromise between nice, but formal models, the huge real stuff (Java or Smalltalk
virtual machines), and the brutal simplicity of stack-based calculators. For teaching
purposes the low-level efficiency (fast access to data, elimination of all redundancy) is
less important than

1 Actually, chronologically it was reversed. . .

– simplicity, compactness, modularity and extensibility of the interpreter kernel,
– readability of the target code (bytecodes, threaded procedure calls, etc.);
– and finally: seriousness, practical usability of the model. Neither FORTH, nor

PostScript have nothing to be ashamed of. . .

The machine should be reasonable from the high-level point of view, avoiding spaghetti
coding (e.g., multiple indirections). We decided thus to construct some small stack-
based kernels using Haskell, which at the same time gave us the opportunity to show
to students some concrete applications of standard and advanced functional techniques,
whose knowledge at the beginning of the course was very rudimentary. However, this
was just a small part of the compilation course, nothing to do with the comprehensive
approach of Kamin [10]. Some part of our inspiration was due to Knuth [11], and his
viewpoint on the role of low-level semantic models in the teaching of programming and
algorithms. . .

This low-level stack machine was then used as a model target for the code generators
taught during the same course. A typical low-level code is quite “stateful”: updateable
stacks, environments, and/or registers, etc. Moreover, it is often considered as untyped,
e.g. the assembly code may put in the same locations integer or floating-point numbers,
and the pointer arithmetic for array access is considered standard. Since the whole idea
of our work is based on the representation of low-level constructs using a high-level,
typed language, we didn’t introduce explicit records containing tags and values, but
trivialize the whole issue through Haskell data structures representing tagged types:

data Value = Fail String | I Integer | F Double | S String
| B Bool | L [Value] | P (Value,Value) -- etc.

easy to generalize. They were equipped with all the essential properties: arithmetic
(where applicable), comparisons, etc., which by itself was a nice training field for the
type class system. TheCode was a linked chain ofCodeItems described below
(rather than an array; the assembly of chunks and pattern-based traversal, i.e., its ex-
ecution, were much easier in that way), but the conversion to a contiguous vector — for
efficiency reasons — has also been discussed.

2 A Simple Stack Machine

The basic aim was to construct areally simple target, FORTH-style machine, whose
programs would have a form similar to:[ild 5, call cube, stop] , where
cube is a user defined procedure:[dup,dup,mul,mul,ret] . The meaning of
identifiers is evident;dup is a primitive which duplicates the element at the data stack
top, mul multiplies the last two stack items,ret returns from a procedure, etc. We
wanted that students be able to constructin a few hourssuch small programminglow-
levelexamples, together with the interpreter of such programs, and with a full plethora
of primitives and user-defined functions for lists, numerics, etc. This part of the course
preceded parsing.

Since the machine is just a module of an integrated compiler-interpreter system,
there was no point in introducing symbolic bytecodes.Instructions are Haskell function
calls, no decoding is needed during the execution, and the extensibility is unlimited.

The machine has two stacks, as typical FORTH architectures: the data stack which
stores values, and the return stack for the flow of control:

type Dstack = [Value]
data Rstack = [Code]

If we neglect — for the moment — the global environment, and some other secondary
issues, the machinecouldbe coded as a simple loop:

evalloop :: Rstack -> Dstack -> Dstack
evalloop Empty st = st
evalloop ((instr:>rcode):rtail) st =

let (nst,nrts) = instr st (rcode:>rtail)
in evalloop nst nrts

with code items being:

type CodeItem = Dstack -> Rstack -> (Dstack,Rstack)
data Code = Empty | CodeItem :> Code

where for technical and training purposes the code is not a list but a specific data
structure, which may be constructed from an ordinary list by the converterlcode =
foldr (:>) Empty . Every procedure call should put the rest of the code on the
Rstack , retrieved upon the return. All data operations act on the data stack, which is
the final result of the program. (The global tree-like environment has ben implemented
as well, but its handling will be omitted from this text, since it doesn’t introduce any-
thing particularly fascinating to our presentation).

But we didn’t code the interpreter in such a way. Our philosophy was formulated
as follows:don’t think about the “interpreter loop” at all! The instruction dispatching
in a modern hardware is distributed. Think of the underlying Haskell infrastructure as
of an “intelligent hardware”, permitting to each instruction to know its successor, and
to “jump to it” (tail-call it). Instructions themselves drive the control flow. This locality
makes everything easier to read, and actually it is also easier to make experiments with
the semantic model of the machine.

2.1 Threaded Code

Thus, the most interesting property of the main interpreter loop is that it doesn’t exist.
It is replaced by a threaded variant, which might be considered as aspecific version
of the continuation-passing style programming. The realCodeItem within this model
has the type

type CodeItem = Dstack -> Code -> Rstack -> Dstack

i.e., an instruction needs the two stacks and thefollowing code as its parameters, and
the program starts by executing a functionstart :: Code->Dstack defined as

start (instr:>prog) = instr [] prog ([stop:>Empty])

The program stops upon the execution ofstop stk _ _ = stk . All other instruc-
tions pass the data to their successors, the machine follows the protocol of thethreaded
code[12, 13]. Among these instructions, particular role is played by the operators which
acts only on the data stack without specific control behaviour. They are defined in a most
generic way, showing to students the power of functional abstraction. For example the
addition and similarly all other arithmetic operators are defined as

add = op2 (+) -- This (+) acts on Values
sub = op2 (-)
mul = op2 (*)

etc., where

op2 op = stkop (\(x:y:stk) ->y ‘op‘ x : stk)

stkop :: (Dstack -> Dstack) -> CodeItem
stkop op stk (instr:>code) rstack =

instr (op stk) code rstack

The generic operatorstkop defines also the comparisons, and otherDstack manip-
ulations, for example

relop :: (Value->Value->Bool) -> CodeItem
relop op = stkop (\(x:y:stk) ->B (y ‘op‘ x) : stk)
eq = relop (==)
gt = relop (>) -- etc.

ld c = stkop (c :) -- Load a known constant
tld t c = ld (t c) -- ... a specific constructor
ild = tld I -- e.g., Integer
fld = tld F -- Double, etc.

dup = stkop (\s@(x:_) ->x:s) -- Clasical FORTH/PS stack ops
pop = stkop (\(_:stk) ->stk) -- (or drop.)
exch = stkop (\(x:y:stk) ->y:x:stk) -- (or swap.)

etc. The usual control structures such as procedure calls and returns take the form

call (instr:>prc) stk cod rstk = instr stk prc (cod:rstk)
jmp (instr:>proc) stk _ = instr stk proc -- Yes, the ‘goto’. . .

ret stk _ ((instr:>code):rstk) = instr stk code rstk

We want to underline the fact that this part of the course played a major part in ac-
quainting the students with the typical construction of a relatively complex functional
package, with pattern-matching, currying2, higher-order functions, polymorphism, type
classes, and simple, but non-trivial data structures. In our opinion such comprehensive,
coherent programming project is more effective in teaching those issues than a much
bigger set of heterogeneous small examples.

2 E.g., several definitions omit theRstack parameter, since it is just a trailing spectator.

2.2 Decisional mechanisms

In PostScript theif andifelse instructions require that the conditional code wrapped
as procedures is put first on the data stack, and retrieved thereof by the corresponding
primitive. The same technique is used in the implementation of thewhile loop. While
this is de factoa practical model, we wanted explicitly to deal with a more primitive,
low-level control structures, a linear code with branching, implementing literally such
diagrams as on Fig.1 The primitive conditional statements, e.g., a conditional branching

ifNjmp bl.then bl.elsecond jmp

Fig. 1. If-then-else

statementifjmp proc is straightforward:

ifjmp (instr:>ccode) (B cond : stk) (nxt:>ncode)
| cond = instr stk ccode
| otherwise = nxt stk ncode

and its inverse,ifNjmp simply reverses the condition. The first parameter of this pro-
cedure:(instr:>ccode) is the chunk of code executed conditionally, whenceupon
the “statically linked” rest of the code:(nxt ...) is simply abandoned. This is a del-
icate point during the presentation. In assembly language a branching statement needs
a label, and several textbooks devoted to compilation introduce labels while discussing
the low-level code generation. They are obviously artificial entities, and references to
them, especially forward references need some gymnastics. Our philosophy goes as
follows: labels are needed for identifying some code chunks. But here these chunks are
tangible, they are sequences of functional objects, you usethem directly as targets of
your referring statements. Yes, you are constructing a linear code, but the assembly
process need not be linear, your Haskell underlying machinery is sufficiently powerful
to construct all kind of cross-referring chunks, also cyclic.

So, if the compiler (or a human) identifies the chunks: the condition, and both con-
ditional blocks in anif-then-elsestatement, and if it/she knows the “future” (i.e., the
continuation)continue of the conditional, the code depicted on the Fig.1 isgener-
atedby the following construction

ifelse_gen cond thcode elcode continue =
let othwise = elcode +> continue
in cond +> (ifNjmp othwise :> thcode)

+> (jmp continue :> othwise)

where(+>) is the concatenation operator for the(:>) sequences. Exactly in the same
way we generate thewhile loop, graphically represented on Fig.2. This gave us the

cond ifNjmp block jmp · · ·

Fig. 2.While loop

opportunity to advocate the use of laziness in order to handle cyclic (here: self-referring)
dependencies. The code deployment generator:

while_gen cond block continue =
let wchunk = cond +> (ifNjmp continue :> block)

+> (jmp wchunk :> continue)
in wchunk

is so compact that it is difficult to imagine something shorter. But it is possible; we shall
get to it later, see the section (4). . .

2.3 Some examples and extensions

This model was designed for the manual construction of low-level programs, the stu-
dents coded such procedures as the recursive:

factorial = ifelse_gen initf tproc eproc (ret:>Empty)
where

initf = lcode [dup,ild 0,eq]
tproc = lcode [pop,ild 1]
eproc = lcode [dup,ild 1,sub,call factorial,mul]

ftest = lcode [ild 6, call fact, ret]

and iterative (with a buffer variable) factorial:

itfact = init +> while_gen (ild 0 :> gt :> Empty) loop fin
where

init = lcode [dup,ild 1,exch]
loop = lcode [param 1,mul,exch,ild 1,sub,exch,param 1]
fin = lcode [exch,pop,ret]

itftest = lcode [ild 7, jmp itfact] -- note the abbrev. of call/ret

where the primitiveparam

param n = stkop (\stk ->stk!!n : stk)

loads on the stack one of its previously stored elements. It is obvious that such stack
manipulations as in the examples above arenevergenerated by a typical compiler. The
functionparam and a few others, e.g. the stack “rotation”, dropping an arbitrary num-
ber of stack items, or assembling/disassembling lists from/to stack item sequences were

introduced in order to prepare the machine for handling codes produced automatically
by the generator from high-level constructs.

The purpose of these examples was to pinpoint the appearance of typical coding
patterns and facilitate the future construction of the code generators, and also to sig-
nal the importance of decent debugging/tracing tools. The machine provided not only
the numerical primitives, but also some simple list handling utilities, permitting e.g. to
construct the iterative list reversal procedure:

lreverse = lcode [lld [], exch, jmp rev]
rev = lcode [dup, lld [], ne, ifjmp rec, pop, ret] +> rec

where
rec = lcode [hdtl, exch, roll 2, cons, exch, jmp rev]

wherehdtl is astackop separating the head and the tail of a list on the stack,roll
is a stack rotation operator:

roll n = stkop rollp where
rollp (x:l) = let (t,d)=splitAt n l in t ++ (x:d)

andlld loads a list on the stack. ThesplitAt function separates the firstn elements
of a list from the rest. The students were encouraged to get acquainted with the standard
Haskell libraries, and to recode in postfix style other popular functions.

3 More Elaborate Extensions

3.1 Error handling

The division by zero, an attempt to split an empty list, etc. exceptional situations are
not handled by this machine. While such problems might be secondary in many sub-
domains of computer science, during a compilation course this is a primary issue. It is
easy to augment the concerned primitives so that they return on the stack the special
value(Fail message) , and that the generic data processorstkop refuse to apply
any operator to such a stack, which propagates the failure ([14]) until the end of the
concerned chunk, but this solution is clearly incomplete: a failure is acontrol, not only
data problem. After a failure the program may execute some idle instructions, but it
shouldn’t be allowed to call or branch.

We wanted to implement a simple, but universal “trapping” solution, something
similar tothrow/catch, or the “escape continuation” mechanism. In some models there
is a global “trap stack” where the program deposes the snapshot of its state before enter-
ing a potentially dangerous code. We implemented this as well; the escaping instruction
retrieved all the information from this stack, and continued with the recovery code,
and the previously stored stacks. But adding one more parameter (almost never used)
to all CodeItems is ridiculous3. Our solution is local, and demands a specific code
generation protocol.

The idea is to be able to write a code of the form
3 Inefficient, of course, but — which is even more sinful in a pedagogical context — it is plainly

boring. . .

lcode [... , trap block escode, nextInstr, ...]

which makes a snapshot of the stacks before entering theblock chunk. If this block
terminates, the control passes automatically tonextInstr , but if it executes some
special “escape” instruction:block = lcode [...,throw, ...] , thethrow
instruction (not a general command; just an appropriately defined identifier) passes the
control toescode , with the previously stored stacks. The machine executesescode
and stops, but the last stage is conventional, other possibilities are also plausible, e.g., a
return, or the same continuation as previously. The question is: how atrap instruction,
which performs the checkpoint (execution time) enables the coding (assembly time) of
thethrow instruction? The argumentation goes as follows:

The natural way to make an object — here: a program chunk — dependent on
something external, is to parameterize it. We shall discover now the power ofclo-
sures, entities which compose a piece of code and some data available at the mo-
ment of the closure call, but referred during the closure coding. These closures may
be used anywhere, even outside the definition scope of those data. Any chunk of code
may be constructed and used in the following form:block throw = lcode [
...,throw, ...] , wherethrow , the escaping instruction is passed fromtrap .
In modern functional languages closures are relatively cheap. If we agree to exploit
parametrized primitive (Haskell) functions in our machine, there is no reason not to pa-
rameterize code chunks during the assembly process. During a normal work this won’t
introduce any penalties.

Thus, thetrap construct may be defined as

trap block (instr:>escode) stk code rstk =
let throw _ _ _ = instr stk (escode +> endprog) rstk
in jmp (block throw +> code) stk code rstk

whereendprog = stop :> Empty . Let us show a simple example, the coding of
a product function, literally translated from

prod [] = 1.0
prod (x:q) = x*prod q

We shall use the exception trapping mechanism as a control structure which stops the
recursion immediately when a zero is encountered. Here is the original code:

prod = lcode [dup, lld [], eq, ifNjmp nonil,
pop, fld 1, ret] +> nonil

where nonil = lcode [hdtl, exch, call prod, mul, ret]

and here is an augmented code, contrived a little, but clear. It is obvious that if such
mechanism is to be used as a “normal” control structure, the escape code should not
stop the program.

xprod = lcode [trap blk escape, ret] where
blk exit = lcode [jmp prod] where

prod = lcode [dup, lld [], eq, ifNjmp nonil,
pop, fld 1, ret] +> nonil

nonil = lcode [hdtl, dup, fld 0, eq, ifjmp bang,
exch, call prod, mul, ret] +> bang

bang = lcode [exit]
escape = lcode [sld "Zero. You lost!"]

Students were encouraged to propose and to code several shortcuts: conditional excep-
tions avoiding thus some branching instructions, augmentedstkop operators which
throws the exception upon aFail ure, etc.

3.2 Tracing

The purity of the machine was — apparently — an obstacle to trace the execution of
the program, and to debug it.

The changes took less than 30 minutes of presentation, and it was the first occa-
sion to seee the Haskell IO in a concrete application, after some general introduction
and some practical exercises, but before the discussion of all the intricacies of monads
introduced together with parsers. We changed the type of the instruction:

type CodeItem = Dstack -> Code -> Rstack -> IO Dstack

and embedded (almost) everything in the IO monad. in such a way every instruction
couldperform an action.

Some of the (simplified) modifications of the code are presented below.

start (instr:>prog) =
putStrLn "START TRACING" >>
instr [] prog ([stop:>Empty]) >>=
print >> -- the stack
putStrLn "END TRACING"

stkop msg op stk (instr:>code) rstack
= putStr (msg++"; Stack: ") >>

putStrLn (show stk) >>
case stk of

(Fail _ :_) -> instr stk code rstack
_ -> instr (op stk) code rstack

add = op2 "ADD" (+) -- op2 inherits msg from stkop
sub = op2 "SUB" (-)
mul = op2 "MUL" (*)

stop stk _ _ =
putStrLn "STOPPING" >> return stk

ret stk _ ((instr:>code):rstk) =

putStrLn "RETURNING" >>
instr stk code rstk

etc. Thecall instruction contained the called procedure name. The code assemblers
(while_gen , etc.) did not change, only thejmp instruction inside took a message
parameter,

ifjmp (instr:>ccode) (B cond : stk) (nxt:>ncode) r
| cond = putStrLn "C.BRANCHING" >> instr stk ccode r
| otherwise = putStrLn "SKIPPING" >> nxt stk ncode r

ifelse_gen cond thcode elcode continue =
let othw = elcode +> continue
in cond +> (ifNjmp othw :> thcode) +>

(jmp "CONTINUE" continue :> othw)

and the interpreted code (lcode [...]) remained almost untouched. The trace took
the following form:

*Tmachine> start (lcode [ild 2, jmp "Here we go" factorial])
Start tracing
LOAD 2; Stack: []
BRANCHING TO Here we go
DUP; Stack: [2]
LOAD 0; Stack: [2,2]
EQ; Stack: [0,2,2]
C.BRANCHING
DUP; Stack: [2]
LOAD 1; Stack: [2,2]
SUB; Stack: [1,2,2]
CALLING Fact
DUP; Stack: [1,2]
LOAD 0; Stack: [1,1,2]
EQ; Stack: [0,1,1,2]
C.BRANCHING
DUP; Stack: [1,2]
LOAD 1; Stack: [1,1,2]
SUB; Stack: [1,1,1,2]
CALLING Fact
DUP; Stack: [0,1,2]
LOAD 0; Stack: [0,0,1,2]
EQ; Stack: [0,0,0,1,2]
SKIPPING
POP; Stack: [0,1,2]
LOAD 1; Stack: [1,2]
BRANCHING TO CONTINUE

RETURNING
MUL; Stack: [1,1,2]
RETURNING
MUL; Stack: [1,2]
RETURNING
STOPPING
[2]
End Tracing

Of course several questions were raised, e.g. how to control the tracing selectively, what
kind of diagnostics was really useful, how to report the state of the return stack, etc. but
these were technicalities. The students were asked to re-implement the concept of user
procedure so that the instructioncall proc did not need the message argument; the
proc edure should present itself. However, the main issue was: If we can add tracing in
such a simplistic way, we know already how to augment the code by something yielding
“side-effects”, perhaps a more complex monad would be useful in other contexts.

4 Alternative Sequencing Model: CPS Codes

A major proposed modification (which could not be pursued exhaustively because our
time was limited) was based on the introduction of the explicit continuation-passing
style in order to sequence the primitive and the user-defined instructions. It could have
been – of course – squeezed into the monadic protocol, but we preferred even to avoid
that name. . . We abandoned the representation ofCode as a list, introducing a special
sequencing operator. In such a way we introduced practically the CPS paradigms, and
we signalled their use in the compilation, more restricted than in [15], or in hundreds
of other works, see e.g., [16–18] but fairly suggestive. We returned later to it while dis-
cussing parsing and program transformations. Here we applied the following reasoning:

Until now every instructionfetchedits successor from the code list. But almost all
the time the successor is known statically, during the code generation, and we shall put
it explicitly as a parameter of every instruction. We will introduce a special sequenc-
ing operator which will eliminate the necessity of the specialcall instruction, of the
return, ofstop , and of the return stack.

The code proposed will be higher-level, and may be less efficient than our basic
interpreter (because of the thunk creation). Its main advantage is that it isvery short
and still very clear, and it will inspire us later how to exploit the idea in other contexts.
Now you should keep in your minds that instead of speaking about values, say, the stack
s we deal with a “lifted” objectlift s which is a function passing the value to some
future treatmentnxt . Thus

lift s nxt = nxt s

A general instruction has the form:

type CodeItem a = Dstack->(Dstack->a)->a

and we must say now a few words about the sense of this type parameter “a” (. . .)
Thestkop operator which makes an instruction from a “pure”Opstack operator

(type Opstack = Dstack->Dstack), is defined as

stkop :: Opstack -> CodeItem a
stkop = (lift .)

and the remaining data processing operators remain unchanged. The introduction of
such compact combinatoric definitions as aboveis a slight shock for the students, but it
is a good occasion to work on the relation between some curried definition and the type
system; the principal type of(lift .) is (a -> b) -> a -> (b -> t) ->
t , and the students are asked to derive it.

The next ingredient is the infix chaining operator, whose typing is another interest-
ing issue. . . :

instr1 .> instr2 = \stk nxt ->
instr1 stk (\nstk ->instr2 nstk nxt)

which permits the construction of such compact definitions and “main programs” as

cube = dup .> dup .> mul .> mul
test1 = fld 5.0 .> cube .> sld "done"

In order to test the code we writeeval test1 , whereeval terminates the chain by
the application of the code to something which ignores the continuation:

eval code = code [] const undefined

(and whose typing is a yet another challenging question for the students. . .)
The typical control structures are also remarkably compact. Theifelse generator

is just the liftedif-then-else, as expected:

ifelse cond thcode elcode = cond .>
\(B v : s) ->(if v then thcode else elcode) s

and the “simpler” conditional statementifthen which doesnothing if the condition
is false, is left as an exercice to more ambitious students, who should finally deduce
how to “lift nothing”:

ifthen cond thcode = ifelse cond thcode lift

Finally, thewhile loop is a cyclic structure as previously. Here it is, together with the
iterative loop which constructs the sequence[0,1,... n] on the stack

while cond code = chunk where
chunk = ifthen cond (code .> chunk)

nezero = dup .> ild 0 .> ne
whtest n = eval

(ild n .> while nezero (dup .> ild 1 .> sub))

As usually with CPS, there is plenty of place to play with the organisation (e.g., flatten-
ing) of recursive structures, beginning with the simplest

factorial = ifelse nezero
(dup .> ild 1 .> sub .> factorial .> mul)
(pop .> ild 1)

etc. This was a nice experience, whose advantage w.r.t. the first contact with CPS as a
program transformation tool was the possibility to test immediately everything.

5 Final Remarks

5.1 Other low-level issues

The presentation above is obviously incomplete. Several other issues have been treated,
albeit often superficially.

– The global environment, storeable variables, etc. were discussed as well.
– We discussed some non-trivial optimizations, e.g., the presence of one “register”,

a variable threaded through the interpreted code, whose role was to represent the
directly accessible stack top; stored on theDstack only in case of necessity. This
is an important issue in the compiler optimisation.

– Our machine was prepared — after some small modifications — to the implemen-
tation of coroutines and similar objects (generators, some simplistic dataflow con-
structs, etc.). The organisation of the control flow was not too difficult, but such
entities as coroutinesmustbe based on a “stateful” computation model, otherwise
they are practically useless. This required a thorough re-design of the machine con-
cepts, and could not be completed during our course.

– We duly mentioned the relation between continuations, and some techniques in
logic programming, e.g., the backtracking.

In general, we found that functional languages used as the description tool of lower-
level architectures are comcise and readable. Even the presentation of the garbage-
collection mechanisms could be nicely done in Haskell, although obviously no serious
real implementation thereof was possible.

5.2 Conclusion

For those teachers who think that functional languages are good for parsing and some
other compilation techniques, it may be interesting to try to exploit the fact that func-
tional languages are really good at modelling in general, and to apply them at much
lower level of the code organisation, somehow outside the traditional functional “folk-
lore”. A functional — high-level — construction of a low-level interpreter as the target
platform seems to be a fruitful idea. The design of parsers, attribute analysers, and of
code generators is then easier, since the practical aspects of program semantics may be
treated very coherently, the students can apply the same coding (and reasoning) style
throughout the whole course.

The package (available from the author) is very short. With its aid (and some pars-
ing utilities based on combinators, say, [1] and others) the students constructed compil-
ers/interpreters for subsets of Scheme, and played with a procedural graphical language.
We, the teacher and the students, enjoyed this work very much, and the compilation
course based on lazy functional techniques should be considered as rather successful. It
began as a solitary pedagogical project, since the author’s colleagues had different vi-
sions of how to teach compilation, but now, when some studentswho passed this course
graduated, they offered their help.

References

1. Graham Hutton, Erik Meijer,Monadic Parser in Haskell, J. Funct. Progr.8, (1998), pp. 437–
444. Also: Graham Hutton,Higher Order Functions for Parsing, J. Funct. Programming2,
(1992), pp. 323-343.

2. Doaitse Swierstra, Pablo Azero,Fast, Error Correcting Parser Combinators: A Short Tuto-
rial , SOFSEM’99 Theory and Practice of Informatics. LNCS 1725, (1999) pp 111–129.

3. Alfred V. Aho, Ravi Seth, Jeffrey D. Ullman,Compilers: Principles, Techniques and Tools,
Addison-Wesley, Reading, (1986).

4. Andrew W. Appel,Modern Compiler Implementation in ML, Cambridge University Press,
(1998).

5. Simon Peyton Jones, John Hughes (editors) et al.,Haskell 98: A Non-
strict, Purely Functional Language, The language report, available from
http://haskell.org/report , (2002).

6. Rinus Plasmeijer, Marko van Eekelen,Clean version 2.0, Language Report, Uni-
versity of Nijmegen and Hilt - High Level Software Tools B.V., available from
http://www.cs.kun.nl/~clean/ , (2001).

7. Luca Cardelli,The Functional Abstract Machine, AT&T Bell Lab. Tech. Report TR-107,
(1983).

8. Simon L. Peyton Jonesal, The Implementation of Functional Programming Languages,
Prentice-Hall, (1987).

9. Rinus Plasmeijer, Marco van Eekelen,Functional Programming and Parallel Graph Rewrit-
ing, (1993)

10. Samuel N. KaminProgramming Languages: An Interpreter-Based Approach, Addison-
Wesley, (1990).

11. Donald E. Knuth,The Art of Computer Programming, Fascicle 1: MMIX, (www-
cs-faculty.stanford.edu/~knuth/taocp.html). (Copyright 1999 by
Addison-Wesley).

12. James R. Bell,Threaded Code, CACM 16, (1973), pp. 370–372.
13. Peter M. Kogge,An Architectural Trail to Threaded-Code Systems, IEEE Computer, (1982),

pp. 22–32.
14. P. Wadler,The Essence of Functional programming, 19’th Symposium on Principles of pro-

gramming Languages, Santa Fe, (1992).
15. Andrew W. Appel,Compiling with Continuations, Cambridge University Press, (1992).
16. D.P. Friedman, M. Wand, C.T. Haynes,Essentials of Programming Languages, MIT Press,

(1992).
17. D.P. Friedman, C.T. Haynes, E. Kohlbecker,Programming with Continuations, In: Program

Transformations and Programming Environments(ed. P. Pepper), Springer-Verlag (1985),
pp. 263–274.

18. Christian Tismer,Continuations and Stackless Python, or “How to change a paradigm of an
existing program”(1999).

