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Abstract
We have taught the 3D modelling and image synthesis for com-
puter science students (Master level), exploiting very intensely the
functional style of programming/scene description. Although no
pure functional language was used, since we wanted to use pop-
ular programmable packages, such as POV-Ray, or the interactive
modeller/renderer Blender, scriptable in Python, we succeded in
showing that typical functional tools, such as higher-order func-
tional objects, compositions and recursive combinations are useful,
easy to grasp and to implement. We constructed implicit and para-
metric surfaces in a generic way, we have shown how to transform
(deform) and blend surfaces using functional methods, and we have
even found a case where the laziness, implemented through Python
generators, turned to be useful.

We exploited also some functional methods for the image pro-
cessing: creation of procedural textures and their transformation.

Categories and Subject DescriptorsD [1]: 1

General Terms Algorithms, Design, Languages

Keywords Image synthesis, Functional style

1. Introduction
The teaching of functional programmingtechniquesat the Univer-
sity level falls sometimes into a methodological trap: the FP issep-
arated from the rest of the curriculum; we often teach functional
languages and tools during the first two years, with plenty of ped-
agogical examples, and then our students discover that the algo-
rithms and practical exercices usually implemented in other lan-
guages have not too much in common with the initial pedagogical
approaches, since when the research domains of teachers are far
from FP, their teaching methodologies are different as well; later
on, the teaching of compilation, of artificial intelligence techniques,
etc. is often far from functional methods. . .

We have attempted, for several years, to exploit a different strat-
egy, more integrated with other domains we taught, where func-
tional tools were simply . . . tools, used in specific contexts, with-
out raising the question of their suitability in general, but following
the idea that if our students learnt some functional techniques/style,
they should apply them.
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• We used functional tools in compilation (not only classical pars-
ing tools, but the construction of functional virtual machines
[1], and typing); the full course was based on Haskell.

• The teaching of the ’scientific programming’(using various lan-
guages) exploited streams for solutions of differential equa-
tions, signals and random generators, insisted on the functional
presentation of the FFT algorithms (or wavelets), on func-
tional aspects of the automatic differentiation [2], etc. We gave
projects on the simulation of waveguide models of musical
sound generators using lazy streams, based on our paper [3].

• Our courses on image synthesis and processing used very in-
tensely several functional tools for the generation of parametric
surfaces and curves, and also for the texture generation, etc.
Those graphical applications are the subject of this presenta-
tion.

The main idea was to abandon the forcing of the usage of functional
languages, and touse an existing, multi-platform, popular and free
software, possessing reasonably complete computational kernels,
decent interfacing layers, and extension faculties through available
libraries and user scripts (or full-fledged programs), and show how
to exploit functionalstylefor obtaining immediate practical results.

We decided to detach the programming style from the lan-
guage, and we used the scene description languages, such as POV-
Ray [4], or integrated scientific packages as Scilab as ‘function-
ally’ as possible. We exploited also Python, as a stand-alone pro-
gramming tool equipped with some graphical libraries, but also
as the scripting language of the 3D modelling/rendering package
Blender [8]. Although Python is not an “accepted functional lan-
guage”, writing not too exotic programs in functional style is rela-
tively straightforward. In this context the term ’functional’ means
the expression-oriented programming style, with serious usage of
higher-order functionals, comprehensions (and maps) instead of
loops, and — when possible — the creation of functional objects
(closures) reused elsewhere. We didn’t insist on the ‘purity’ of the
basic constructions. Formerly we have tried a similar, quite satis-
fying, projects in an even more imperative setting – the creation
and transformation of VRML scenes through scripts in Java and
JavaScript. But functional techniques proved once more to be sim-
ply more elegant and more universal.

Of course, the usage of functional, as declarative as possible
style was not ’implicit’, but manifest. Students were reminded of
techniques learnt formerly through Scheme and Haskell, even if
the context contained imperative elements.

This was an experience not without danger; there were at least
two lines of criticism we met:

• Typical, concrete exercices in graphics/imagery are too com-
plicated to be solved using functional approach only without
severe inefficiencies. The programming style becomes eclectic,
polluted by some imperative constructs, which goes against the
didactic aims of the project.



• Students see that practical functional programming is feasible
using various languages, which may decrease the popularity of
specifically functional languages even more. . .

Those issues remain open, but we noticed that the productivity of
students increased substantially, when they learned how to combine
functional methods with object-oriented tools. As said above, we
didn’t forbid such imperative forms as loops for basic constructs,
but we encouraged the students to hide them in various map- or
fold-like constructs.

In our opinion this liberal attitude was a good decision. It is
easier to appreciate some programming paradigms, when one does
not feel constrained by them. People convinced that the functional
style is nice and powerful in practical contexts, accept easier the
idea that languages which insist on this style are good ones as
well. . .

We underline once more that we werenot interested in teaching
of FP, but on using functional tools practically. In the concerned
domain we insisted on close relation between functional entities
and graphical objects, on combination and transformation thereof.
We avoided too complicated constructs, the abstraction level used
was rather moderate.

2. Using POV-Ray as a Functional Language
2.1 Simple recursion

A standard game showing the power of recursion is the creation of
fractals (von Koch or IFS style). It took the students 10 minutes
to convert from Scheme the program which generates the “fern” in
Fig. 1.

#macro Fern(p0,p1,r,n)
#if (n=0) cone{p0,r,p1,0.8*r}
#else
#local n1=n-1;
#local d=p1-p0; #local p2=p0+0.5*d;

union{cone{p0,r,p1,0.8*r}
Fern(p2,p2+0.4*vrotate(d,-45*z),0.9*r,n1)
Fern(p1,p1+0.3*vrotate(d,45*z),0.8*r,n1)
Fern(p1,p1+0.9*vrotate(d,3*z),0.8*r,n1)}

#end #end

Figure 1. A “fern” in POV-Ray

Then, it was a matter of less than one hour to model a more realistic
model, such as on the Fig. 2, and created by the following recursive
macro:

#macro Obj(a,c)
object{Rectree(i+1,l1,s1)

rotate Rz rotate (a+20*R)*y
translate c*l1*y}

#end
#macro Rectree(i,l,s)
#if(i<imax)
#local l1=l*r;
#local s1=s*w;
#local R=2*rand(S)-1;
#local Rz=(30+10*R)*z;

union{cone{<0,0,0>,s,<0,l1,0>,s1
texture{T_Wood7}}

Obj(40,1) Obj(130,0.8) Obj(220,0.75)
Obj(310,0.667)}

#else
triangle{<0,0,0>, <1,0,1>, <-1,1,0>

scale 22*s1 pigment{color Green}}
#end

#end

Figure 2. A recursive tree

This program served also to pinpoint the essential difference be-
tween true functions and macros: the auxiliary macroObj useslit-
erally identifiers which are semantically internal toRectree al-
thoughObj is external to it. Lexical substitution is not the same
as the binding of local variables. Several errors produced during
the extension of this program, adding more variations, improving
leaves, etc., finally gave rise to a complete project whose aim was
to write in another languagethe generator of trees for POV-Ray.
Most students — almost obviously — chose a functional language!

The recursive macros, with local variables make POV-Ray an
almost functional language. Globally, being a scene description
language, POV-Ray has naturally a declarative flavour. There are
anonymous functions, and conditional expressions (“C” style:Bool
? thnxpr : elsxpr). The recursive instances return “values”,
POV-Ray objects, which may be composed, transformed, decorated
(e.g., textured), etc. Of course, the “composition” of 3D objects
(e.g., the Constructive Solid Geometry operations: union, differ-
ence, blending etc.) is not the same as the functional composition,
they aredatacombinations, but the relation between the two is ped-
agogically meaningful.

POV-Ray is not a full-fledged functional language, the higher-
order programming is somehow clumsy, mainly because of scoping
problems. Functions are not recursive, macros are, and the lexical
substitution demands much attention to avoid identifier trapping
errors. But a macro can assign a parameter and thus, implicitly
return a function assigned to this parameter. Many functional tools



are implementable, but it is obvious that the studentsmust be
acquainted with the “true” functional techniques and languages
first!

Here we focussed on simple recursion, and on the construction
of complicated geometrical distributions, permitting the deforma-
tion of implicit surfaces, or the deformation of randomly generated
configurations, like the “galaxy” in Fig. 3.

Figure 3. A “galaxy” in POV-Ray

2.2 Deformations

We did a lot more, e.g., constructing small functional L-system
packages, or experimenting with various deforming/blending strate-
gies for implicit surfaces [5] represented as equationsF (x, y, z) =
0. (Actually, F (x, y, z) represents a bit more than the surface: it
splits the space into the “interior” withF (x, y, z) < 0, and the
exterion forF positive.)

For example, in order to make an object (here: a box) distorted
by an axial torsion as in Fig. 4, we programmed

#macro Torsion(p,fnobj) //fnobj is a funct. obj.
#local rotx=function{x*cos(p*y)+z*sin(p*y)}
#local rotz=function{-x*sin(p*y)+z*cos(p*y)}

isosurface{
function{fnobj(rotx(x,y,z),y,rotz(x,y,z))}}

#end

// (Extruded square)
#declare bbox=function{max(abs(x)-1,abs(z)-1)}

Torsion(1.4,bbox)

Figure 4. A screw as implicit surface

Of course, the same macro could add torsion to other implicit
(iso-) surfaces. Dozen of other distortions have been proposed and
implemented. It was an occasion to learn the fact that if we want
that the points~x composing a figure undergo a transformation
~x → R~x, then the surface represented asF (~x) = 0 must be
transformed contra-variantly, and changes intoF (R−1~x) = 0.
This means unfortunately that several useful distortions are difficult
to implement because finding the inverse transform may be very
complicated, but it was an occasion to use iterative approximations.

2.3 Blending

A particularly interesting subject was the functional construction
of the CSG objects: union or intersection of implicit surfaces, with
blending (smoothing) functions, which produced the effects like
that on Fig. 5.

Figure 5. Blended union of two cylinders

Several interesting examples have been based on the s.c. R-
functions proposed by Rvachev [6]. For example, ifF1 and F2

represent two implicit surfaces, thenF = F1 + F2 −
√

F 2
1 + F 2

2

is their union. Adding to this form a term which is very small ev-
erywhere apart from the region whereF1 andF2 are close to zero,
e.g.d(F1, F2) = a0/(1 + (F1/a1)

2 + (F2/a2)
2), or some Gaus-

sian, the transition between functions is smoothed. In order to vary
a little the procedure, we coded the blended union using the Ricci
approach [7]:f = (f−k

1 + f−k
2 )−1/k, wheref is a function whose

value at the surface is equal to 1. So, for the standard representa-
tion, the POV-Ray program which generated the Fig. 5 took the
form:

#declare axcyl=function(a,b){a*a+b*b-1}
#declare cylx=function{axcyl(y,z)}
#declare cyly=function{axcyl(x,z)}

#macro Blend(f1,f2,k)
#local g1=function{f1(x,y,z)+1}
#local g2=function{f2(x,y,z)+1}

function{
pow(pow(g1(x,y,z),-k)+

pow(g2(x,y,z),-k),-1/k)-1}
#end



isosurface {
Blend(cylx,cyly,1.7)
...

}

The CSG objects exist in POV-Ray as language-embedded con-
structs. But we taught image synthesisalgorithmsand their imple-
mentation, not the usage of POV-Ray, so a higher level reconstruc-
tion of some techniques served the same purpose as the construc-
tion of meta-interpreters of Lisp or Prolog in those languages. (In
fact, a full ray-tracer may be and has been constructed in the lan-
guage of POV-Ray, but this was not so interesting from the declar-
ative point of view).

To summarize, the language of POV-Ray permits to define
generic constructions, parameterized, recursive macros, and arbi-
trary composition of functions which represent implicit (or para-
metric) surfaces. The declarative style of scene definition is natu-
ral, and inspiring. In case of more complicated programs, which
become too inefficient, thenatural solution is to constructfunc-
tional programs in any “decent” language, whose output is a scene
specification for POV-Ray. We can say thus that the second line of
the criticism of our approach – that students will not use functional
languages, having other tools at their disposal – is not so serious.

3. Blender and Python
3.1 Recursion and comprehensions

We got some practical experience using Python scripts for driving
the 3D modelling/rendering package Blender [8]. Since Blender
is an interactive modeller, we might suppose that constructing a
fractal pyramid, like this in Fig. 6 is a rather painful task, while a
recursive script producing it is straightforward, provided we know
how to displace (and scale) 3D objects. (We must acknowledge that
straightforward is not synonymous with trivial. . . )

Figure 6. Sierpínski pyramid in Blender

The essential code for this object begins with an auxiliary function
which ‘adds’ two tuples element-wise. Note the usage of pattern
matching. Actually the addition in our example is the concatena-
tion, since the elements of the tuple are two lists, containing the ver-
tices and the facettes of tetrahedra returned by the (omitted) func-
tion tetra. The recursive clause is as horrible as is to be expected
from a functional program which uses in one expression two maps
(list comprehensions) in the form[f(z) for z in zlist], and

the combinatorreduce (in Haskell:fold). The parameterlp is a
list of position of vertices of a tetrahedron; they define the positions
of the recursive instances of the Sierpiński sponge. We believe that
it is one of the shortest programs we have seen, which generates
this object. . .

def sp((a,b),(c,d)):
return (a+c,b+d)

def sierpyr1(n,lp):
if n==0:

return tetra(lp)
else:

return
reduce(sp,

[sierpyr1(n-1,[p+lp[k]
for p in lp])

for k in range(0,4)],
([],[]))

3.2 Closure export

However, in this context we wanted much more than just a recur-
sion, we wanted to exploit seriously some generic, higher-order
programming. The construction of parametric curves and surfaces
is a particularly good target for such methods, especially if we pre-
fer to convey algorithmseasy to memorize, rather than “raw” and
boring, although more efficient. How to construct a curvec(t), a
vector function of one parameter, which is a cubic spline passing
between the pointsp0 andp1 for t in (0, 1)?

Almost all students can reconstruct in 15 minutes aquadratic
spline passing through 3 given points, but higher polynomials are
much more cumbersome. The functional solution is particularly
simple and intuitive. We can construct a cubic function by the
linear interpolation of two quads. Here the possibility of export
a closure from a function is very useful. Here is the whole code
permitting to constructc = cubic(pm,p0,p1,p2). The functions
quad andcubic are constructors (generators) of functional objects
representing the curves, not the curves themselves. The points
pm, p0, p1, p2 are knots, values of the curve fort− 1, 0, 1, 2.

def quad(pm,p0,p1):
a,b = 0.5*(p1-pm),0.5*(p1+pm)-p0
def q(t):

return p0+t*(a+b*t)
return q

def cubic(pm,p0,p1,p2):
def c(t):

return (1-t)*quad(pm,p0,p1)(t)+
t*quad(p0,p1,p2)(t-1)

return c

The pattern: construct (def) f(x) inside another function, and
return f from it, became ubiquitous in Python. Not only in our
exercices, but in the world of Python programmers working in
scientific (and some other) domains. Despite the manifest attitude
of some creators of Python, who want to remove too much of
“functionalisms” for the sake of the simplification of the language,
we believe that one of the reasons for its success is a reasonably
good functional layer. . . The translation of a curve along an axis
goes as follows:

def transl1(cv,ax,a):
def f(t):

return a*ax+cv(t)
return f

We defined, of course, also the translation and the rotation of sur-
faces, and other lifted operations. Python has anonymous func-



tions (lambdas), it can simulate conditional expressions through
the Boolean shortcuts, e.g.,a = Btest and thxpr or elsxpr,
it has list functionals such as map, filter and reduce (fold), the
list/generator comprehensions, and the last versions have rational-
ized the scope issues permitting to export closures in a straightfor-
ward, secure way. Here is another example, a spiral:

def spiral(r,dz):
def f(t):

return Vec(r*cos(t),r*sin(t),dz*t)
return f

We see here that the function returns a Pythonobject — a 3D
vector for which we constructed a relatively complete library of
basic operations, including rotations, scalar products, etc. The call
to the functioncubic returns such vector, but note that within the
definition of this function this is not explicit. The dynamic, object-
oriented typing of Python facilitates the coding; it suffices that such
values asp0 etc., may be added or multiplied by scalars.

3.3 Parametric surfaces

In such a way, after having constructed a library containing e.g.,
the rotation of a vector about an axis:rot(v,ax,angle), the
definition of a figure of revolution, aparametric surfacewhich is a
function of two parameters - coordinates:

• a parameter along the generator, the curve which will sweep the
space by rotating about the axis, and

• the angle of this rotation,

becomes quite straightforward.
We define not directly the surface, but — as in the case of curves

— its constructor(or: generator, but we don’t want to confuse this
term with the generating curve. . . ), specified by this generating
curvecv and the axisax. Here is the construction of this generic
revolution constructor:

def revol(cv,ax):
def f(s,phi):

return rot(cv(s),ax,phi)
return f

Making a generalized cylinder, or a linear extrusion of a generator
curve along an axis is even simpler. Again, a constructor:

def extrude(cv,ax):
def f(s,t):

return t*ax+cv(s)
return f

Being able in such a way to ‘lift’ vector operations onto the domain
of functions, permits to compose those operations quite easily. Here
is the canonically oriented torus, with its axis alongz (AZ).

def torus(rr,r):
gen=transl1(crotate(circle(r),AX,PI/2),

AX,rr)
return revol(gen,AZ)

Such sea-shell as in Fig. 7 is a program of 5 lines, provided we use
another function from our library, the Catmull-Rom spline which
iteratescubic over a list of points specifying this splite.

def catrom(lp):
pm=quad(lp[2],lp[1],lp[0])(2)
pp=quad(lp[-3],lp[-2],lp[-1])(2)
lp=[pm]+lp+[pp]
fp=[cubic(lp[n],lp[n+1],lp[n+2],lp[n+3])

for n in range(0,len(lp)-3)]
def f(t):

k=int(t)
return fp[k](t-k)

return f

Note the usage of list comprehension, and also of the fact that we
constructed alist of functions. The result returned by this construc-
tor is a closure which selects the appropriate segment function ac-
cording to the parameter. This is commented below.

The transformation of the generating curve is a homothety com-
posed with rotation. Concretely, the generating curve upon the ro-
tation by the angleϕ is scaled by the amountexp(κ ·ϕ). The origin
of the coordinate system is the singular point, the top of the shell,
so this scaling translates the curve.

Figure 7. A sea-shell in Blender

Dozens of other sea-shells, snails, etc. have been generated. We
used those functional contraptions not only to generate, but also to
deform other functional surfaces, such as the deformed sphere in
Fig. 8. The generic deformation functional of a surfacesf through

Figure 8. A deformed sphere

a functiondf which acts on points, is as simple as that:

def deform(sf,df):
def f(s,t):

p=sf(s,t)
return df(p)

return f

The deforming function was a composition of an elongation inz:
z → z · (1 + fe−α(x2+y2)), and a rotation, whose angle depended
on the transversal radius:x2 + z2; a similar function was used to
create the “galaxy”.

Many other generic constructs are easily programmable, for
example the surfaces which interpolate between two curves:

def intpol(c1,c2):
def sf(s,t):

return (1-t)*c1(s) + t*c2(s)
return sf



Other constructions, such as the Coons, 4-curves interpolation sur-
faces, are equally easy. Already some years ago we tried to use
such techniques quite intensely [9], but we wanted then to exploit
the elegance of atypedfunctional language (Clean). Since the in-
terfacing, the 3D plotting, texturing, etc. was a bit painful, we used
Clean to generate sampled points and other data stored in a file, and
plotted then by Matlab (or Scilab). We observe that the current ap-
proach is easier, more comfortable for students (less tools to mas-
ter). The dynamic typing offered by Python plays here a positive
role, despite the known advantages of static typing for the debug-
ging, which in a pedagogical context is a severe headache. . . .

We acknowledge the existence of other projects combining sev-
eral tools, for example the nice package Haven [10] of Anthony
Courtney, which combines Haskell as a generating tool with Java
for the rendering of the Scalable Vector Graphics scene descrip-
tions.

3.4 Surfaces out of surfaces

Construction of a knot, like in Fig. 9 is not extremely easy, even if
the students are told that this is a tube which follow the ‘director’
curve which wraps around a torus.

Figure 9. A toroidal knot in Blender

There are three ingredients in this construction, all three functional.
First, we make a torus as a classical revolution surface, whose
generator is a circle. Then, acurve is defined by constraining the
torus angular parameters(ϑ, ϕ): ϑ = 2/3 · ϕ, and finally atubeis
constructed with this curve as its director, and any generator, e.g., a
square.

The construction of squares, of general splines, and other curves
defined segment by segment was another exercise in functional pro-
gramming. If the call to the functional generatorsg(p0,p1) re-
turns a curve function — the straight line passing by the specified
points, the generator of the square take four corners, and constructs
a list of functions: sq=[sg(p0,p1, sg(p1,p2), sg(p2,p3),
sg(p3,p0)]. Then for t in [0, 4] we takek=int(t), and we re-
turn sq[k](t-k), avoiding all case analysis. This is conceptually
quite trivial, but convincing students that the construction of data
containing functional objects is natural and useful, takes some time.
When they grasp this idea, the functional construction of L-systems
becomes considerably easier.

The example above, the construction of tubes posed another
pedagogical challenge. A tubular object is a useful generic con-
struction, which takes two curves, the generator and the director,
and one fixed vectorn, typically a normal to the generator plane.
Then the generator is translated along the director, and rotated in
such a way that synchronously rotatedn coincides with the local
tangent of the director. There are two distinct problems here, the

construction of the tangent, and the choice of the axis/angle of ro-
tation.

We could thus apply the strategy already known — making a
functional which takes a function as parameter, and returns an-
other function, its derivative computed numerically. The rotation
problemis a challenge, requiring a decent knowledge of the Frenet
frame computations, permitting to adopt a strategy which avoids
too much torsion (which is visible in Fig. 9). We couldn’t enter
the full game of differential geometry, but several functional con-
structs which specified normals, etc. have been proposed. Although
we couldn’t develop the technique, we mentioned the possibility to
use theautomatic differentiation techniqueto compute the gradi-
ents [2]. Our surface constructor library contains this module im-
plemented in Python as well.

We wanted to be able to use standard arithmetic operators for
functions, so thatf=f1+f2 meanf(t) = f1(t)+f2(t), etc. But
Python does not permit such overloading of the addition operator,
so we applied a known trick — Pythonobjectshave been con-
structed, for which we could define those overloaded operators (the
functions__add__ etc.), and also we overloaded the__call__
methods permitting the objectq to act as a function: the formq(x)
is converted by the compiler intoq.__call__(x). The effective
function was embedded within such an object, and invoked indi-
rectly through the overloaded__call__. Then, the codes for the
extrusion objects, etc. become significantly shorter.

We were thus able to convince the students on a practical set
of examples that functional and object-oriented techniques may,
and should go together. This version of our vector/curve/surface
library is still in an experimental stage, since our department begins
right now to teach Python to computer science students in a more
organized way.

3.5 Python generators and laziness

Lazy lists, trees, and other co-recursive constructions are inherent
to pure functional languages, and usually absent from languages
with mutable data, since the delayed evaluation in such a con-
text leads to ambiguities. Notable exceptions are lazy streams in
Scheme and in Caml, but their usage is relatively rare and restricted.

The basic idea of constructing an “infinite” data structure, de-
fined through a recursion without terminating clause, and con-
sumed incrementally, with theby-needinstantiation (and memo-
ization), can be programmed in Python, thanks to the concepts of
generators. How can we use them for computer graphics?

A small fragment of our course on image synthesis was devoted
to the sampling/polygonization of implicit surfaces. We discussed
the relevant theory (variants of the marching cubes algorithm, etc.,
see [5]), but we found it useful to propose a simplistic polygonizer
based on octrees, in order to be able to work with implicit surfaces
within Blender. The idea of a lazy functional implementation of
such a polygonizer can be found in [11].

Structurally an octree is a 8-fold tree, whose root corresponds
to a cube, and its branches — to the 8 smaller cubes obtained by
the triple binary subdivision of the root. The algorithm starts with
the embedding of the implicit surfaceF (~x) = 0 in a cube, and per-
forming a few (1 – 2) initial subdivisions. Those sub-cubes which
cut the surface, i.e. whose vertices give different signs ofF are
subdivided further, up to the desired precision. The cubes “inside”
or “outside” remain undeveloped. The points of intersection of the
surface with the cubes’ edges are then assembled into polygons,
and Blender does the rest.

We shall not present the whole package, just the procedure-
generator which constructs an infinite octree. It is parameterized
by the subdivision length, and by the root cube. A cube is an object
whose attribute isvs, the list of vertices (coordinate vectors). Its
constructor,Cub is parameterized by its two opposite corners.



The octree itself is an object containing the root cube andbr,
the list of branches, which are octrees.

def mkoct(n,cub):
lfd,lfu,lbd,lbu,rfd,rfu,rbd,rbu = cub.vs
ct=0.5*(lfd+rbu) # The center
br=map(lambda (v1,v2): mkoct(n+1,Cub(v1,v2)),

[(lfd,ct),(0.5*(lfd+lfu),0.5*(lfu+rbu)),
(0.5*(lfd+lbd),0.5*(lbd+rbu)),
(0.5*(lfd+lbu),0.5*(lbu+rbu)),
(0.5*(lfd+rfd),0.5*(rfd+rbu)),
(0.5*(lfd+rfu),0.5*(rfu+rbu)),
(0.5*(lfd+rbd),0.5*(rbd+rbu)),(ct,rbu)])

yield Oct(n,cub,br)

Note the endless recursion (8-fold, inside themap functional),
rarely seen outside such languages as Haskell or Clean. . . In
fact, the presence of the keywordyield makes this procedure a
generator. Its call, e.g.,oc=mkoct(0,unitCube) returns a “sus-
pended object”, instantiated through the method calloc.next().
The consumer procedure doesn’t really care about that, since it
obtains the access to thek-th branch of the argument by the call
b=branch(oc,k), defined as follows:

def branch(oc,k):
x=oc.br[k]
if isinstance(x,GeneratorType):

x=x.next()
oc.br[k]=x

return x

and which ensures the development by need with memoization.
Of course it can be done differently, but the lazy approach is
compact, the case analysis during the consumption process is much
simpler. The consumer procedureconsume(n,F,oc) is of course
sensitive to the depthn. If it is greater than the limit, the cube is
split into 6 simplexes (tetrahedra), and the procedure returns the
list of polygons. In the recursive case the only operation which is
necessary reduces to

...
return sum([consume(n+1,F,branch(oc,k))

for k in range(0,8)],[])

(The functionsum is a generic adder, which folds the overloaded
(+) operator; in the current case it is the concatenation.)

The current version of the polygonizer produces the results
somehow ugly, and needs further development. The advantage of
having this within such modeller as Blender is the possibility to
process them further interactively.

Another project which will be developed next year consists
in treating the implicit surface function as a “force field”, which
constrains a set of initially free particles to locations near the
surface [12]. The particles can then be used for the reconstruction
of a mesh, and also for texturing.

4. Functional Techniques in Image Processing
The course on image synthesis was completed by a short introduc-
tion to image processing methods. Here we have worked with the
image-processing package Gimp [13], which is extensible through
scripts written in Scheme (SIOD). So, in principle, the functional
programming could be exercized quite extensively, although its di-
rect applications were limited, since the aim of the course was just
to introduce the basic filtering, morphological operations, and some
manipulations in colour spaces (which would facilitate the segmen-
tation).

The generation and transformation of images considered as
functionsf(x, y) whose codomain is the pixel colour, has been ex-

tensively studied, see e.g., [14, 15], and we have shown to students
several dozens of images generated by programs in Clean and in
Matlab. We used them as texture patterns for the 3D synthesis.

Gimp permits to draw lines, rectangles, ellipses, etc., so we
could easily construct all standard Koch-style fractals, 2D L-
systems, etc. (no need to show ubiquitous examples), although in
this context Gimp doesn’t offer anything remarkable, as compared
with fuller Scheme implementations, offering a complete graphic
support, such as DrScheme [16]. It is impractical to draw figures
pixel by pixel, for efficiency reasons.

On the other hand, it was rather easy to construct arbitrary func-
tions:gradientswhich generated 1-dimensional (cartesian or polar;
x, y or r) slices of grey images, which were then used asdisplace-
ment maps. The Scheme (Script-Fu) layer in Gimp provides more
than 100 useful functions. For example, a linear gradient demanded
just the creation of an empty gradient object, and seting its left and
right colours. The linear interpolation between was automatic.

Their usage is the following. The target image is scanned point
by point, and for each pixel we accede to the pixel within the source
image, which has the coordinates of the target pixelmodifiedby the
valueof the corresponding pixel of the displacement map. (So, the
displacement map should in general be a 2-component image).

A simple linear (the value of the pixel is proportional to its
relevant coordinate), black-white horizontal gradient interpreted as
the displacement functionf(x) = ax, could give the displacement
x → x + ax = (1 + a)x, a scaling transformation.

A linear gradient in x used as the y displacement, together with
its transpose acting on x, permitted to construct rotations (with
some rescaling):x → x + ay; y → y − ax (simultaneously)
of any image. By composing the linear gradient with radial weights
also defined as a gradient fonction, it was easy to obtain radially
weighted rotations, effects like the right image in Fig. 10.

Figure 10. Displacement mapping in Gimp

Of course, there is nothing extraordinary in this whirl effect, avail-
able often as a primitive in many image processing packages. But
we wanted to convey its mathematical background and its imple-
mentation.

Much more complicated functions have been constructed with
function compositions (displacement maps which distorted other
displacement maps, but we couldn’t go too far since Gimp uses
8-bits per colour, so the discretization noise became quickly un-
bearable. For more consequent projects we abandoned Gimp in
favour of other packages (e.g. Matlab, which unfortunately could
not be distributed freely to our students). The implementation of
some functional tools in Java for ImageJ [17] is under investiga-
tion. Again we shall try to convince students tothink functionally,
independently of the language used.

5. Conclusions
The usage of functional methods in computer graphics is an ev-
erlasting issue. Already in [18] we saw many interesting ideas on



how to compose functional objects representing parametric graph-
ical entities. Since then we have seen many projects in Haskell and
other languages, too numerous to cite. Unfortunately, serious at-
tempts to use functional techniques as a more or less coherent and
serious teaching methodology in the domain of computer graphics
seem to be rare.

Since we teach the image synthesis already for some years, the
project is in constant development, but we can already say that it
was an immense fun for everybody, and it occupied us for almost
four months of the semester; it cannot be presented fully here. In
a pedagogical context, where the time alloted to one exercise is
limited, students could not concentrate themselves simultaneously
on the algorithmic side of the problem, and on the interfacing.
When they had to use primitive libraries (OpenGL, etc.) their visual
results were too often ugly, because the programs were too simple.

By programming POV-Ray or Blender they could spend more
time on the geometric design through parametrization, recursion,
etc., and they could obtain something much nicer, and thus more
encouraging, quite fast. We underline the fact that we had a con-
crete pedagogical program to realize in collaboration with other
people, and we could not sacrifice the images synthesis/processing
techniques just to have more time for playing with functional tools.

The curriculum of Master-1 (4-th year) in Computer Science
includes a personal programming project whichshouldoccupy the
student usually during 5 – 6 months. We delegated to those projects
some more involved problems, such as the functional construction
of an automatic differentiation package inspired by [2] in the con-
text of graphics, the polygonization of implicit surfaces, and many
others. Other projects, shorter but more complicated (such as the
texture reconstruction using the Heeger technique [19], or the im-
plementation of active contours — all implemented as functionally
as possible) have been proposed to Master-2 (fifth year) students.
This didn’t work always as expected, but we can affirm the follow-
ing.

• Our somewhat eclectic approach, combining the high level
functional code with the necessity of implementing some im-
perative constructs, was agood thing. It permitted to our stu-
dents to split the global problem in layers, to control better the
interplay between various programming styles. In a sense, the
functional methodology, taught formerly through Scheme and
Haskell, ceased to be a “religion”, and became a “weapon”. . .

• Because of the fact that image synthesis in general is an inter-
esting topic to learn (it was by far the most popular optional
module), the interest of programming graphic algorithms in a
structured and fast way thanks to functional methods was con-
siderable. It was a pleasure to observe that students themselves
proposed such programming projects as the construction of a
ray tracer, or a texturer/shader in a functional language.

So, the presented philosophy seems promising, the project will
continue, and we will try to adapt it tofree programming tools
available for the students, since we do not feel restricted to any
concrete language or package.
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