
Generating Power of Lazy Semantics

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen, France

e-mail: (karczma@info.unicaen.fr)

Abstract

We discuss the use of the lazy evaluation scheme as coding tool in some

algebraic manipulations. We show | on several examples | how to pro-

cess the in�nite power series or other open-ended data structures with

co-recurrent algorithms, which simplify enormously the coding of recur-

rence relations or solving equations in the power series domain. The

important point is not the \in�nite" length of the data, but the fact that

the algorithms use open recursion, and the user never thinks about the

truncation.

1 Introduction

This article develops some applications of the functional lazy evaluation schemes

to symbolic calculus. Neither the idea of non-strict semantics, nor its applica-

tion to generate in�nite, open structures such as power series, are new, see for

example [1, 2], some books on functional programming ([3, 4]), etc. The lazy

evaluation (or call by need is a protocol which delays the evaluation of the ar-

guments of a function: while evaluating f(x) the code for f is entered, but if

f doesn't need x, nothing wrong happens, even if we demanded to calculate

f(1=a) where a = 0. The code for 1=a is compiled to a thunk or a promise, but

perhaps never executed. The function f receives a promise to deliver 1=a when

needed. The thunk is evaluated when the code of f uses it.

The domain of lazy evaluation is very well known, constitutes one of the

bases of the modern functional programming, and a priori it has nothing to do

with algebraic manipulation, although it is obviously used therein [2, 5]. How-

ever, the super�cial analogy between an algebraic formula with some symbolic

indeterminates, and a function body waiting to be evaluated, is quite explicit.

Perhaps, paradoxically, this is one of the reasons why almost the totality of

the computer algebra code | both user and implementor packages | is strict,

the lazy objects are usually encapsulated in speci�c domains treated by special-

ized algorithms, such as the series packages in Maple ([5]) or Axiom ([2]). The

possibility to operate upon symbolic formul� apparently makes it less fashion-

able for the computer algebra community to manipulate the computations such

as thunks, higher-order functions etc.

In this paper we present a partial and heterogeneous, but coherent approach

to the lazy evaluation as a coding tool, restricted to some typical problems in

symbolic computations. In general the subject is enormous: the lazy semantics

is very intensively used elsewhere, e. g. in the functional I/O, parsing, all kind

1

of monadic approach to the computation semantics, nondeterminism, etc. To

present the examples we shall not use any computer algebra system, but we will

show some examples in the style of a lazy polymorphic programming language

Gofer([6]), a dialect of Haskell ([7]). Our aim is not to suggest that something can

be done, but how. We will omit the discussion of the polymorphic overloading

of standard arithmetic operators permitting to write u � v where u and v are

lists, see for example [8]. The examples in the text have been edited in order

to simplify the notation (some conversions required by the Haskell typechecker

have been omitted), and the layout has been embellished, but they are working

programs.

It seems important to clarify and to underline that the main idea behind the

discussed application of the lazy evaluation is not necessarily the possibility to

handle in�nite structures, but the following:

� The possibility to code e�ectively the �xed point de�nitions: � = g(�),

where � is just a data structure, and not a recursive function (see [9]).

The in�nite list of 1 might be coded as

ones = 1 : ones

where the colon is the in�x \cons" operator | the list constructor. For a

useful and not so trivial example see the equation (1).

� The ability to apply e�ectively the co-recursion, or the extrapolating re-

cursion. While \standard" recursion descends on, and analyses the data,

the co-recursion creates the data.

The proof techniques of some co-recurrent identities are a little unorthodox

[10, 11], as the standard induction might have nothing to induct on. Take for

example the de�nition of a sequence of iterates:[x; f(x); f(f (x)); f(f (f (x))); : : :],

(very useful for the lazy approach to the iterative equation solvers, see for exam-

ple the �rst program of the section 3), and the de�nition of the map functional,

which applies a function to all the elements of a list:

iterate f x = x : iterate f (f x)

map f (a:aq) = f a : map f aq

We can prove that iterate f (f x) = map f (iterate f x) in the following

way:

iterate f (f x)

= f x : iterate f (f (f x))

= f x : map f (iterate f (f x)) { Ex hypothesi!

= map f (x : iterate f (f x)) = map f (iterate f x)

Note the right-to-left reduction. Such \bootstrap" is esssential in the co-in-

ductive proofs, and we shall see that it has an enormous generative power as

well. See the section (3) for a non-trivial usage of iterate. In principle it

is not necessary to have the unlimited data de�nitions, without terminating

clauses. We don't even need such academic examples as above: a typical co-

recursion case, known to almost all readers, and not demanding any kind of lazy

evaluation, is the construction of a transitive closure, for example the ood-

�lling algorithm in graphics. In order to paint a region starting from the pixel

2

(x; y) either do nothing if the pixel is already painted, or paint it, and do the

same to all the neighbours. It is obviously an extrapolating recursion scheme,

which is guaranteed to progress, but terminates eventually only because the

universe is �nite.

Of course, with lazy streams it is easy to create potentially in�nite data

structures such as series, continuous fractions, etc. not necessarily in the con-

text of computer algebra [12], or to construct the non-deterministic algorithms,

but there are more universal arguments for the lazy functional programming:

thanks to the deferred evaluation and higher order functions it is easier to for-

mulate some quite orthodox algorithms in a static, declarative manner, without

polluting them with countless for/while loops and other imperative constructs,

which hide sometimes the clarity of the underlying strategy.

One serious warning seems appropriate here: while standard recursive schemes

consume (reversibly) the system stack while storing the contexts of the recursive

calls, the lazy constructions, such as iterate, or ones �ll-up the dynamic heap

of the system with anonymous functional closures created ad hoc. This is time-

consuming and requires a very good memory management, adapted to laziness.

The lazy adds-on to a strict language, such as the macros delay or cons-stream

in Scheme are not very e�cient [1].

2 Power series generation and manipulation

In our approach an univariate power series U(x) = u

0

+ u

1

x + u

2

x

2

+ u

3

x

3

: : :

will be represented by the lazy list [u

0

; u

1

; : : :]. The series coe�cients may

in principle belong to any algebraic domain. An e�ective and simple coding

of an arbitrary algorithm dealing with such series is not entirely trivial. The

algorithms are usually dominated by the administration of the truncation trivia.

In fact, if one implements the algorithms discussed in [13] or [14] using indexed

vectors, one sees mainly summing loops and the evaluation of the bounds of

these loops, which becomes quite boring. Here the addition and the subtraction

term by term is given by the \zip" functional. From now on we change the

layout of our programs, to suggest visually their mathematical avour:

u+ v = zipWith (+) u v;

where

zipWith op (a : a) (b : b) = op a b : zipWith op a b

But the multiplication and the division are equally short:

(u

0

: u) � v@(v

0

: v) = (u

0

� v

0

) : (u

0

� v + u � v)

(u

0

: u)=v@(v

0

: v) = (w

0

: w) where

w

0

= u

0

=v

0

w = (u� w

0

� v)=v

(where the construct u@A is a way to inform the compiler that the parameter

is called u and has the structure A.)

The di�erentiation and integration are obvious:

integ c u = c : zipWith (=) u [1 : :]

3

di� (u

0

: u) = zipWith (�) u [1 : :]

where [1 : :] denotes the in�nite sequence 1, 2, 3, 4,. . . The integration is a lazy

operation, permitting the construction of self-referring objects. It takes some

time to master this technique and to appreciate the fact that the de�nition:

W = Const+

R

f(W) is not just a speci�cation, or an equation, but an algorithm.

It su�ces to know the constant term in order to be able to generate the next one

and the whole series. The de�nition above is equivalent to the obvious identity

for any series f : f

n

= f

0

n�1

=n.

The integration gives thus the direct solution to the classical trick which

constructs the transcendental functions on the series domain as the solutions of

simple di�erential equations, see [13, 14] or [15]. For example, if w = exp(u),

then w

0

= u

0

exp(u) = u

0

w, and

w =

Z

w � u

0

dx: (1)

We code thus, knowing that the integration constant is equal to e

u

0

:

serExp u@(u

0

: u) = w where

w = integ (exp u

0

) (w � di� u)

In the same way we construct a (real) power. If w = u

�

, then w

0

�u = �u

0

�u

�

, or

w = u

�

0

+�

R

w � u

0

=u which can be coded again in two lines. And the logarithm

is: log u = w, where w = log u

0

+

R

u

0

=u, which is not even self-referring.

Sometimes one has to be careful. If we take the reduced Bessel equation:

u

00

+

2� + 1

x

u

0

+ u = 0 (2)

we see that the �rst two terms have the same expansion order, and the lazy

integration is cumbersome. But, knowing the parity properties of the Bessel

function, we introduce an auxiliary function w : w(x

2

) = u(x), and we integrate:

w = 1�

1

� + 1

Z

�

1

4

w + x

2

w

00

�

; (3)

where the reader shall note the perversion: one does not integrate w

00

, but w

0

in order to obtain w, whose second derivative is reinjected into the formula.

This derivative is \protected" by the integration and the multiplication by x

2

,

which together add three known items in front of it. Lazy techniques might

be quite laborious, and one-line procedures do not come for free. . . The lazy

approach does no miracles, it just replaces the iterative coding of the equivalent

recurrence relations. But we had to massage a little our program, exactly as

somebody would manipulate a symbolic formula.

Another nice application of the co-recurrent schemes is the reversion of power

series. The reverse of a given series is the solution of the following problem.

Given

z = t+ V

2

t

2

+ V

3

t

3

+ : : : ; �nd t = z +W

2

z

2

+W

3

z

3

+ : : : : (4)

Among several possible approaches to this challenge, one consists in reducing

it to a composition of series. This is readily done if we note that an auxiliary

series p de�ned by t = z(1 � zp) ful�ls the identity:

p = (1 � zp)

2

�

V

2

+ V

3

z(1 � zp) + V

4

z

2

(1� zp)

2

+ : : :

�

; (5)

4

and the task is recursively solvable. The composition is very simple. We want to

�nd W (x) = U(V (x)), where the series V is free from the 0-th term, otherwise

a full numerical series would have to be summed. The solution is nothing more

than the ordinary, but in�nite Horner scheme:

U(V) = U

0

+ x(V

1

+ V

2

x+ : : :) � (U

1

+ x(V

1

+ V

2

x+ : : :) � (U2 + x(: : :))) ; (6)

or, horribly enough

scomp u (0 : v) = cmv u where

cmv (u

0

: u) = u

0

: v � (cmv u)

and for the reverse we get

serrev (0 : 1 : v) = t where

t = 0 : m

m = 1 : (�m

2

) � scomp v t

Other approaches are also practical. One might code in three lines the Lagrange

reversion algorithm (see [13]), or use the Newton method to solve iteratively the

equation f(t) = t+ v

2

t

2

+ : : :� z = 0, and obtain t as a function of z (see [16]).

But in this case one should �rst read the next section.

3 Iterative approximation which pretends to be

exact

If a series satis�es a more complicated, non-linear equation f(U) = 0, the lazy

approach may inuence also the construction of the Newton algorithm. The

idea of using Newton algorithm in the series domain is not new, see [16, 17].

Again, instead of coding a loop broken by some convergence criteria, we con-

struct shamelessly an in�nite list of in�nite iterates. For example, if W =

p

U ,

then we get [W

(0)

;W

(1)

; : : : ;W

(n)

: : :], where W

(n+1)

=

1

2

�

W

(n)

+ U=W

(n)

�

.

The construction of this stream is quite simple, the standard prelude function

iterate does the job:

sqrtS y@(y

0

:) = iterate

�

�x! (1=2) � (x+ y=x)

�

(sqrt y

0

);

We should note that the starting value in this formula is not a number, the

constant

p

y

0

is promoted into the series: [

p

y

0

; 0; 0; : : :]. But now comes the

main point: suppose we need 7 terms of the solution. Knowing the quadratic

convergence of the algorithmwe take the 3-th iterate, as we know that its 8 terms

are correct. If we change our mind and take another 2 terms, we have to generate

the next iterate. The lazy d�mons will do all this clumsy administration, and

will not permit the users to fall into their bad habits, and claim that the number

of terms wanted must be explicitly given.

So, we choose well the 0-th (initial) iterate, whose constant term must agree

with the constant term of the exact solution, otherwise an arbitrary number of

iterations would be necessary to construct even this.

The �nal answer is a lazily constructed series which takes 1 term from the

0-th iterate, 1 (the second) from the �rst approximation, 2 (the third and the

fourth) from the next one, 4 (from 5 to 8) from the third iterate, then 8, 16, etc.

All these segments are (lazily) concatenated, and the end user will see the initial

5

segment of the exact solution and will not even think about the approximation

order. The correct choice of the starting value is of utmost importance, otherwise

the lazy development would propagate the error through all the terms.

Here is the code of the lazy attening. The function segc drops ndrop

elements from a list and concatenates the following ntake items with rst.

atn ((s

0

:) : v) = s

0

: aux 1 v where

aux nd (u

0

: u) = segc u nd nd (aux m u)

where m = 2 � nd

segc u@(u

0

: u)ndrop ntake rst

jndrop > 0 = segc u (ndrop �1) ntake rst

jntake > 0 = u

0

: segc undrop (ntake �1) rst

j otherwise = rst

The lazy treadmill does not free us from the necessity of analyzing special cases

such as the degeneration of series, or non-trivial analyticity properties. Morit-

sugu et al. [18] discussed the development of the function p = ptan(s) which is

the solution of p � tan(p) = s, and �nds its applications in the analysis of the

Josephson junction.

We see that this function is not regular, but it is rather a Puiseux series

beginning with p = �(3s)

1=3

+ : : :. If we want to use the reversion method,

it should be intelligent. Here is the solution in the form of an entire series in

x = (3s)

1=3

:

ptan =

let x = 0 : 1 { Series: U(x) = x

p =serpow (3 � v) (1=3) where

(: : v) = x � tan x

in serrev (0 : p)

The authors of [18] discuss the application of the Newton algorithm for the

equation m(p) = tan(p) � p �

1

3

x

3

= 0, observing that the derivative m

0

(p) =

tan

2

p has no free term, so additional work is needed. The relatively simplistic

techniques presented in our paper should be somehow extended if we want

to generate lazily the Laurent expansions, to calculate the residues, etc., but

everything can be done. In particular, a suggestive generalization of our lazy

series which imposes itself, is the sparse representation, where the items are

not just the coe�cients, but pairs (coe�cient ; exponent). We found it useful

also to include, where possible, a special object (in fact the empty list; the lazy

semantics does not preclude the existence of �nite objects) to denote 0. In such

a way the standard polynomial packages realized in a lazy language might be

lifted to the series domain.

The regular solution for x =

3

p

3s of the discussed equation is

ptan(x) = �x +

2

15

x

3

�

3

175

x

5

+

2

1575

x

7

+

16

202125

x

9

�

362

9384375

x

11

+

49711

12415528125

x

13

+

13952

27918515625

x

15

�

574406627

2573221666640625

x

17

(7)

(The last term in [18] is erroneous, quite probably because of some bad trunca-

tion, a mistake which we could not have committed.)

6

4 Continued fractions and Pad�e approximants

The power series are not the only \in�nite" data structures which can be pro-

cessed by lazy algorithms, although here the co-recursion is particularly simple.

But already in 1972 Gosper [19] (see also [13, 20]) has shown that the arithmetic

of continued fractions can be very elegantly realized through incremental stream

processing. We could give here a particularly simple realization of such arith-

metic package, but for algebraic manipulation it might be more interesting to

work with series than with numbers. It is quite simple to construct from a given

series an in�nite continued fraction. We give here a particular, simplistic form

which breaks down in presence of vanishing coe�cients, but its generalisations

are relatively simple, see the comments at the end of the previous section.

u

0

+ u

1

x + u

2

x

2

+ � � � = g

0

+

g

1

x

1 +

g

2

x

1 +

g

3

x

1 +

.

.

.

(8)

We can forget about the 0-th term which is trivial. The rest of the expansion

is a 2-liner:

cnf u@(u

1

: u) = u

1

: g where

g = cnf (tail (u

1

=u))

where tail removes the �rst element of the list (it is always 1), and u

1

in the

division u

1

=u should be promoted to a series. We do not discuss the degenerate

cases when the series U is in fact a �nite rational function, which stops the

expansion, and requires a more intelligent treatment. But if we truncate the

continued fraction after 2m terms, and if we reconvolute it back, we obtain just

the [m=m] diagonal Pad�e approximant without solving any equations. This is

the reconvolution program:

dpad 0 g

0

(g

1

:) = (c; 1)

dpad m g

0

(g

1

: g) = (c � p+ (0 : g

1

� q); p)

where (p; q) = dpad (m� 1) 1 g

The continuant sequence for the exponential function is equal to [1, 1,

�1

2

,

1

6

,

�1

6

,

1

10

,

�1

10

,

1

14

,

�1

14

,

1

18

,. . .], and this is a good testing exercice. The generation of the

continued fractions from the 1=n! series is not very stable, the cancellations are

important, and oating calculations behave badly. The example above served

the author to discover (unwillingly!) a bug in one in�nite precision rational

package.

For the [4=4] approximant of the exponential function we immediately get:

1 +

1

2

x +

3

28

x

2

+

1

84

x

3

+

1

1680

x

4

1�

1

2

x +

3

28

x

2

�

1

84

x

3

+

1

1680

x

4

: (9)

Of course, the claim that we got the Pad�e approximant \without solving any

equations" is just a magic incantation. In fact, the reconvolution procedure is

an equation solver by backward substitution. In the next section we present

another equation solver in a Byzantine style.

7

A critical reader should note that the last algorithm is not lazy, although it

uses an in�nite stream. This is just a standard recursive formula. Can we do

it lazily? Of course, the extrapolating recurrence relations for the continuous

fraction convergents are well known, see [14], in our case they take the following

form:

g

0

+

g

1

x

1 +

g

2

x

1 +

g

3

x

1 +

.

.

.

=

g

0

1

;

g

0

+ g

1

x

1

;

g

0

+ g

1

x + g

0

g

2

x

1 + g

2

x

;

g

0

+ g

1

x+ g

0

g

2

x + g

0

g

3

x+ g

0

g

1

g

3

x

2

1 + g

2

x + g

3

x

; : : : ;

P

n

(x)

Q

n

(x)

; : : :

(10)

where the convergents ful�l the recurrence

P

n+1

(x)

Q

n+1

(x)

=

g

n+1

xP

n�1

(x) + P

n

(x)

g

n+1

xQ

n�1

(x) +Q

n

(x)

(11)

which gives the program below. Now we don't have to recalculate backwards

another approximant if we need the next term:

cnvg (g

0

: g

1

: g) = cnx (g

0

; 1) (g

0

: g

1

; 1) where

cnx r@(p

p

; q

p

)s@(p

m

; q

m

)(a

0

: a) = r : cnx s t a where

t = ((0 : a

0

� p

p

) + p

m

;

(0 : a

0

� q

p

) + q

m

))

5 Asymptotic expansions

Some asymptotic developments are ideally well adapted to the lazy treatement.

Take a typical series obtained by the iteration of the integration by parts, for

example the generalized erfc function:

Z

1

x

e

�t

2

=2

t

m

dt =

e

�x

2

=2

x

m+1

� (m+ 1)

Z

1

x

e

�t

2

=2

t

m+2

dt (12)

This is an extremely simple open recurrence for the series in

1

x

:

erfg m = 1 : 0 : �(m+ 1) � erfg (m+ 2).

Here the result is trivially known, but the same technique is applicable in more

intricate cases.

We present here another example, suggested in the wonderful book [21].

This example is su�ciently archetypical to be useful, and su�ciently crazy to be

interesting. We will show how the perturbation of the Stirling asymptotic series

for the factorial will generate this series. Asymptotically n! '

p

2�n(n=e)

n

S(n),

where the series S(n) = (1 + a

1

=n + a

2

=n

2

+ : : :) is known, but we shall not

unveil the mystery yet. What we assume is that if the formula above holds, it

should agree with the recurrence n! = n � (n� 1)!, from which we deduce

S(n� 1) =

1

e

�

1�

1

n

�

�(n�1=2)

S(n); (13)

8

or, after introducing x � 1=n:

S

�

x

1� x

�

= G(x)S(x); (14)

where

G(x) = exp

�

�1�

�

1

x

�

1

2

�

log(1� x)

�

: (15)

The correcting factor is easily computable by our package. We get:

G(x) � 1+ x

2

f(x) = 1 +

x

2

12

+

x

3

12

+

113

1440

x

4

+

53

720

x

5

+

25163

362880

x

6

+ : : : : (16)

This �xes the 0-th term of S, it must be 1. We write S(x) as 1+x �A(x) (whose

�rst term we call A

1

, and not A

0

), and we realize with dismay that the formula

1

1� x

A

�

x

1� x

�

= A(x) + x � f(x) + x

2

f(x)A(x) (17)

is not an algorithm, but a system of equations, with the unknowns having the

same order on both sides. However, after the subtraction of A(x) from both

sides we obtain

A

1

1

x

�

1

1� x

� 1

�

+x �A

2

1

x

�

1

(1 � x)

2

� 1

�

+x

2

�A

3

1

x

�

1

(1� x)

3

� 1

�

+ : : : =

(18)

= f(x)(1 + x �A(x));

where each factor

1

x

(1=(1� x)

m

� 1) is a regular series. Now the formula looks

\su�ciently lazy", but it continues to be a system of equations for the coe�-

cients of A. We propose thus a lazy approach to backward substitution. Suppose

we try to �nd the series u obeying the equation

u

0

g

(0)

(x)

+ x

u

1

g

(1)

(x)

+ x

2

u

2

g

(2)

(x)

+ : : : = b(x); (19)

where g and b are known. Obviously u

0

= g

(0)

0

� b

0

, and

u

1

h

(1)

(x)

+ x

u

2

h

(2)

(x)

+ : : : =

1

x

�

b(x) � g

(0)

(x) � u

0

�

; (20)

where h

(k)

= g

(k)

=g

(0)

. The problem is solved. We construct the list of coe�-

cient functions g, and we recklessly apply the schema (20) to the equation (18),

\forgetting" that the right-hand side is not known, but involves A.

stirl = a where

xm = 1 : (�1) { (1� x; completed with zeros)

a = bksub (f � (1 : a)) glist

glist = iterg xm where

iterg p = �p=(tail p) : iterg (p � xm)

bksub b (g

(0)

: g) = z

0

: z where

(z

0

: z

q

) = b � g

(0)

z = bksub z

q

(map (= g

(0)

) g)

9

which produces the result:

A = 1 +

1

12

x+

1

288

x

2

+

�139

51840

x

3

+

�571

2488320

x

4

+

163879

209018880

x

5

+ � � � (21)

to any precision you wish, which is not too easy to �nd in the popular textbooks.

6 Some partition functions

We present here two more examples which show the generating power of the

co-recurrent algorithms.

The generator of the unlabelled, rooted Cayley trees has the form:

� (x) = x exp

�

� (x) +

� (x

2

)

2

+

� (x

3

)

3

+ : : :+

� (x

m

)

m

+ : : :

�

: (22)

There is no closed expression known for the coe�cients of � . Such formul�

might be interesting for people working in the theory of complexity ([22]), or

for physicists using the diagrammatic expansions in perturbation theory, and

computing several combinatorial factors ([23]). The expression above seems

not to be computable because of the in�nite sum in the exponent. But if we

introduce such that � = x we see that the exponent satis�es in fact a

\decent" recurrence relation, and we may immediately code:

tau = (0 : psi) where

psi = serExp (exsum psi 1)

exsum u m = 0 : ((1=m) � (compow m u) + exsum u (m+ 1)),

where compow m is a simple function which separates the elements of its argu-

ment by m zeros. We get immediately

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381,

634847, 1721159, 4688676, 12826228, 35221832, 97055181. . .

Another case study is the generating function for the partitions of an integer.

There are several ways of representing and for computing it, but we are partic-

ularly interested by the in�nite product representation:

Z(x) =

1

Y

n=1

1

1� x

n

: (23)

Computing a �nite approximation to it by standard iterative methods is rather

unwieldy, so other representations are used. You may �nd the solution for Z(x)

in [2], using logarithms and the Lambert function, but we can rewrite this as

an open recurrence:

Z(x) = Z

1

(x); where Z

m

(x) =

1

1� x

m

Z

m+1

(x): (24)

This is a runaway, Mephistophelean perversion rather than an algorithm, and

the lazy programming will not help us directly here. But after having rewritten

it as Z

m

(x) = Z

m+1

(x) + x

n

Z

m

(x), and after introducing B

m

(x) such that

Z

m

(x) = 1 + x

m

B

m

(x), we have the �nal recipe:

B

m

(x) = 1 + x

�

B

m+1

+ x

m�1

B

m

(x)

�

; (25)

which gives us the following e�ective, and quite e�cient program:

10

partgen = 1 :

B

1 where

B

n = p where

p = 1 :

B

(n+ 1) + byxn (n� 1) p

where byxn is a function which multiplies a series by x

n

(adds n zeros at the

beginning). And here is the result: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101,

135, 176, 231, 297, 385, 490, . . . , which starts to scroll immediately through the

screen, although after having generated some dozens of terms the process begins

to slow down, because the dynamically created thunks become bigger.

7 Diagram generation

This is just a simplistic, \toy" example of algorithmic generation of open re-

cursive structures: representations of Feynman diagrams, using the Dyson-

Schwinger equation. The same or similar techniques can be used for the Mayer

graphs in statistical mechanics, geometric models of solidi�cation, or other cases

in physics, where the theory is nice enough to tell us how to expand a struc-

ture, but not how to stop the expansion. The structures: full sums of graphs,

or amorphous solids, are �xed points of in�nite growing processes. We restrict

the presentation to a 0-dimensional scalar '

3

thory, see for example [24]. In a

0-dimensional theory there are no spatial coordinates, so all objects are reduced

to pure numbers. For us this is irrelevant, as we are just interested in the gen-

erating algorithms, but even in general such models are not completely useless

| they provide a reasonable way to calculate combinatorial weights in a serious

theory.

A particle | the �eld quantum | can propagate, or interact through a

triple, quadruple, etc. vertex:

i j

k

i j i j

l
k

etc. . . .

Restricting the discussion to the scalar '

3

case means that there are no other

types of vertices than triple and that the propagators have no internal (spinorial,

etc.) structure. The line represents the propagator, a function �

ij

, where

i; j denote the attributs of the particle in the initial and the �nal state. The

vertex, or the primitive interaction is a function

ijk

which is considered small

and which will be used as the perturbation parameter. The aim of the theory

is to obtain the transition amplitude G(i

1

; i

2

; : : : ; i

n

) between two arbitrary

states: one subset of fi

k

g denotes the incoming particles, and the remaining

indices | outgoing, taking into account all possible interactions: emissions and

absorptions of particles in the vertices. From these atoms one can construct all

kind of composite behaviour. For example, the amplitude (or Green function)

for a binary interaction (scattering) has the following graph expansion:

G(i; j; k; l) =

11

=

+ + +. . .

+. . . +. . .

The exact theory requires the summation of all the graphs. If the vertex corre-

sponds to a small coupling constant, the perturbation theory can be used (with

all usual caveats). We introduce the generating functional:

Z[J] =

1

X

n=0

1

n!

X

i

1

:::i

n

G(i

1

; i

2

; : : : ; i

n

)J

i

1

J

i

2

� � �J

i

n

; or

=

1

X

n

1

n!

where the crosses denote the �ctitious sources J . The Green functions are given

by the functional derivatives:

G(i

1

; i

2

: : : ; i

n

) =

@

n

@J

i

1

: : : @J

i

n

Z[J]; (26)

for J = 0. If the theory is closed, each particle either passes through as a

spectator, or interacts at least once. The recursive reduction of the amplitudes

becomes clear:

=

+ +. . .

from which we can deduce the recursive representation of Z[J]:

=

+ 1/2

12

or:

@

@J

i

Z[J] = �

ij

J

j

Z[J] +

1

2

�

ij

jkl

@

@J

k

@

@J

l

Z[J]: (27)

Z[J] generates all the graphs, including those with disconnected spectators.

But from the general graph theory it is well known that W [J] = lnZ[J] is the

generator of all the connected components. It satis�es the equation

@

@J

i

W [J] = �

ij

�

J

j

+

1

2

jkl

�

@

2

W

@J

k

@J

l

+

@W

@J

k

@W

@J

l

��

: (28)

which corresponds to:

=

+1/2 +1/2

The Dyson-Schwinger equations (27) and (28) are so elegant, that one can �nd

them in any book on Quantum Field Thory. Sometimes the authors remark

casually that these equations are not very practical. For the actual Feynman

diagram generation other frameworks are used, see for example ([25]) and ref-

erences therein.

One reason for this disfavour is clear, the D-S equations are open recursive

formul�. However, from the lazy semantics standpoint they are not just recur-

rences but algorithms! Of course, for a full-edged theory we would need the

spinor/tensor algebra, multidimensional integration, etc. They are extremely

important, but from the generational point of view | almost irrelevant. In the

0-dimensional space the vertex and the propagator are just scalars. We can

normalize the propagator, taking � = 1.

We introduce now an auxiliary variable ' = dW=dJ . It obeys the equation

' = J +

1

2

�

'

0

+ '

2

�

: (29)

This is a derivative of W | a series in J representing the \full theory": each

term is a series in . The equation for ' is di�erential in J , but algebraic in .

Disentangling this by hand is very clumsy (this is a suggestion for particularly

sadistic teachers of Quantum Field Theory)

We base our strategy on the following: ' will be considered �rst as a series

in , whose elements are series in J . The �rst term is equal to '

0

(J) = J ,

the unit series. We de�ne the derivative of such a compound as a map over its

elements. Its coding in Haskell is: indiff = map diff. We code thus

phi = j : (1=2) � (phi

2

+ indi� phi) where

j = 0 : 1 { The unit series

In order to compute the scattering amplitudes, the propagators, etc., we have

to transpose '. It will be treated as a series in J , whose elements are functions

13

of . The propagator is equal to W

00

= '

0

j

J=0

, so, it is enough to collect the

second elements of the internal items of ':

d

2

= map (head : tail) phi

The �nal formula for the propagator is:

d

2

= 1 +

2

+

25

8

4

+ 15

6

+

12155

128

8

+

11865

16

10

+ : : : (30)

(which corrects a small mistake in the Cvitanovi�c's book.)

8 Conclusions

One may observe that the presented examples do not belong to the domain

called usually \computer algebra", as there are no symbolic indeterminates in

the results. (We don't cheat: a univariate polynomial or series does not need

to include explicitly the indeterminate. As we know, Knuth calls this domain

\seminumerical".) We want to stress upon the following:

The co-recurrent approach to the construction of lazy data structures does not

depend on the underlying mathematical domain. We have voluntarily used a

universal functional language in order to keep the examples simple, but the se-

ries, etc. could have symbolic coe�cients as well, which would require the use of

some symbolic package just to manipulate these coe�cients. We tried to suggest

that the manipulation of programs | co-recursive arrangement of evaluations,

auto- and cross-referring (lazy) data, application of higher-order combinators

(maps and zips), etc. provides an elegant and practical alternative to some

symbolic data manipulations. The lazy formulation of algorithms permits to

� deal directly with some extrapolating recursive problems found in sciences;

� replace the chain of recurrence formul� by a compact representation of

the full solution of these recurrences;

� liberate the user from the curse of controlling explicitly the truncation

orders in all sorts of iterative processes;

� formulate in an extremely compact way the solution of a system of equa-

tions adapted to the back-substitution mechanism.

The potential of non-strict evaluation is not restricted to \in�nite" streams, but

constitutes a reasonable coding tool in many other cases, it has been used to con-

struct animation packages, or solve numerical problems using �nite elements. It

would be very useful to have a full-edged lazy algebraic package, but it seems

that for e�ciency reasons it must be built upon a lazy evaluation kernel, as

adding it ad hoc to an existing strict systems makes it di�cult to exploit its full

power. So, those who would like to implement immediately their lazy algorithms

should use lazy languages such as Haskell, Hope [26], or commercial, superbly

distributed and documented Miranda of Research Software Ltd. The programs

are in general as e�cient as their strict equivalents, but the comparison is dif-

�cult, as often there are no equivalents. . . In all of the presented examples the

results started to appear on the screen immediately, even if the last term could

14

take a few minutes. The suspended evaluations might save much work, but the

dynamic creation of thunks is costly, and the unevaluated closures occupy the

storage which must be reclaimed by the garbage collector after the evaluation.

This is one of the reasons why the lazy functional languages are considered to

be not very e�cient. We are mostly interested in saving human work, and here

the lazy approach clearly wins.

The author implemented a toy lazy package in MuPAD using its powerful and

user-friendly object-oriented subsystem, but neither MuPAD [27] nor Maple are

suitable for this purpose, due to the fact that the lexical closures (local, dynam-

ically constructed functions) must be simulated by substitutions.

Unfortunately, the industrial strength functional lazy languages are rela-

tively new, and the work has just begun. For the time being, the reader who is

mainly interested in computer algebra, is encouraged to do some experiments in

Axiom or, perhaps, in Mathematica, which, being partially a rewriting system,

might be better adapted to lazy manipulations than a procedural language such

as Maple.

References

[1] H. Abelson, G.J. Sussman, Structure and Interpretation of Computer Pro-

grams, MIT Press, (1984).

[2] William H. Burge, Stephen M. Watt, In�nite Structures in Scratchpad II,

EUROCAL'87, LNCS 378, pp. 138{148.

[3] R. S. Bird, P. Wadler, Introduction to Functional Programming, Prentice

Hall, (1988).

[4] William H. Burge, Recursive Programming Techniques, Addison-Wesley,

Reading, Mass., (1975).

[5] D. Guntz, M. Monagan, Introduction to Gauss, Sigsam Bulletin 28, no. 2,

(1994), pp 3 { 19.

[6] Mark P. Jones, Gofer, Functional Programming Environment, (1991).

[7] P. Hudak, S. Peyton Jones, P. Wadler et al., Report on the programming

language Haskell, (Version 1.3), Technical report Yale University/Glasgow

University, (1996).

[8] Jerzy Karczmarczuk, Functional Programming and Mathematical Objets,

Functional Programming Languages in Education, FPLE '95, LNCS 1022,

Springer, (1995), pp. 121{137.

[9] Lloyd Allison, Circular Programs and Self-referential Structures, Software

| Practice and Experience, Vol. 19(2), (1989), pp. 99 { 109.

[10] Andrew D. Gordon, A Tutorial on Co-induction and Functional Program-

ming, Proceedings, 1994 Glasgow Workshop on Functional Programming,

Ayr, Scotland, September (1994).

15

[11] David A. Turner, Elementary Strong Functional Programming, Proceed-

ings, Functional Programming Languages in Education, (FPLE '95), Ni-

jmegen, December 1995, Springer LNCS 1022, pp. 1{13.

[12] M. Douglas McIlroy, Squinting at Power Series, Software | Practice and

Experience, 20, (1990), pp. 661{683.

[13] Donald E. Knuth, The Art of Computer Programming, Vol 2 / Seminu-

merical Algorithms, Addison-Wesley, Reading, (1981).

[14] Richard Zippel, E�ective Polynomial Computation, Kluwer Academic Pub-

lishers, Boston, (1993).

[15] H. T. Kung, J. F. Traub, JACM 25 (1978), pp. 245{260.

[16] R. P. Brent, H. T. Kung, Fast Algorithms for Manipulating Formal Power

Series, Journal ACM 25, (1978), pp. 581{595.

[17] J. D. Lipson, Newton's Method: a great algebraic algorithm, Proc. ACM

Symp. on Symbolic and Algebraic Comput. (1976), pp. 260{270.

[18] S. Moritsugu, N. Inada, E. Goto, Symbolic Newton Iteration and its Ap-

plications, Symbolic and Algebraic Computations by Computers, World

Scienti�c Publishing, (1985), pp. 105{117.

[19] R.W. Gosper, MIT AI Laboratory Memo 239, Feb. 1972, Hack 101, pp.

37{44.

[20] Jean Vuillemin, Exact Real Computer Arithmetic with Continued Fractions,

IEEE Transactions on Computers 39(8), (1990), pp. 1087 { 1105.

[21] Ronald E. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathe-

matics, Addison-Wesley, Reading, Mass., (1989).

[22] J. S. Vitter, Ph. Flajolet, Average-Case Analysis of Algorithms and Data

Structures, in: Algorithms and Complexity, ed. Jan Van Leeuven, Elsevier,

(1990), pp. 431{520.

[23] C. Domb, Graph Theory and Embeddings, in: Phase Transitions and Crit-

ical Phenomena, ed. C. Domb et M. S. Green, Academic Press (1974), pp.

1{92.

[24] Predrag Cvitanovi�c, Field Theory, Nordita Lecture Notes, (1983).

[25] P. Nogueira, Automatic Feynman Graph Generation, Journal of Computa-

tional Physics, 105, (1993), pp. 279{289.

[26] N. Perry, Hope+, Technical Report IC/FPR/LANG/2.5.1/7, Imperial Col-

lege, (1987).

[27] B. Fuchssteiner et. al., MuPAD Manual, Birkh�auser, Basel, (1995).

16

