
Computer Algebra

and Lazy Semantics

Jerzy Karczmarczuk

(University of Caen, France)

Abstract

We discuss some lazy evaluation techniques,

and we present an attempt to implement in

MuPAD a lazy evaluation package, which in

our opinion is underestimated as the algo-

rithm coding tool, useful in the construc-

tion of in�nite streams, e. g. power se-

ries, but also for many other iterative struc-

tures or processes. We show how to use the

class (MuPAD domain) system to overload

the standard arithmetic to the domain of de-

layed data structures. We present a work-

ing model, but we conclude that the cur-

rent internal semantics of MuPAD is not well

adapted to this sort of experiments.

Reminder:

The function f(x) is lazy if in certain cir-

cumstances, when in case it does not need

the value of x at all, it will terminate with-

out error even if called as f(1=a) with a =

0, or in general any f(?), where ? is a

disaster, e. g. a non-terminating com-

putation. This implies that the evalua-

tion of x takes place under control of f ,

only when the value of x is needed. The

code for 1=a is compiled to a thunk or a

promise, but perhaps never executed. The

function f receives a promise to deliver

1=a when needed. The thunk is evaluated

when the code of f uses it, and usually

the result of the evaluation replaces the

thunk in situ, which prevents further, use-

less evaluations, if the parameter x is used

twice. This assumes the referential trans-

parency, the possibility of substitution of

the evaluated value for the thunk, and pre-

cludes the usage of side e�ects, unless the

programmer is a pyromaniac. (It is dif-

�cult to rely on side-e�ects if you don't

know when they occur. . .)

Ultra-classical example

(For syntactic simplicity coded in Haskell.

MuPAD examples will come later). Here

is the in�nite list of integers starting with

0. The colon is the in�x `cons' operator:

intlist = intGen 0

where

intGen m = m : intGen (m+1)

We see here that

� An open, non-terminating recursion is

used.

� We may, and we must use only a part

of the created data, because the data

itself, not just the process, is in�nite.

� The code is very short.

The main point, which is the leitmotif of

this talk, is that during the generation, we

don't care about the truncations. If we don't

look at the element no. 132, only �rst 131

will be evaluated, followed by a promise.

0

intGen 1

-

0 1

intGen 2

- -

etc.

For those who have strong connotation to

memoizing functions (option: remember):

this is not a function, but a data structure.

We repeat: our main purpose is to sim-

plify the construction and coding of al-

gorithms, using a functional programming

style. There is no more philosophy in that.

So, take a more intricate example. The

same list [0, 1, 2, 3, ...] might be con-

structed as

intlist = 0 : (ones + intlist)

where

ones = 1 : ones

and where we have de�ned (omitting here

some nasty details) the pair-wise summa-

tion of sequences:

(a:aq) + (b:bq) = (a+b) : (aq+bq)

(which is a shameless lie, because a Faith-

ful Functionalist would use the zipWith (+)

functional to make the de�nition more ge-

neric.)

If you wish:

zipWith op (a:aq) (b:bq) =

(a `op` b) : zipWith op aq bq

Yes, that's it:

intlist : 0 : : : : : : : : : : :

ones : 1 1 1 1 1 1 1 1 1 : : :

intlist : 0 1 : : : : : : : : : : :

You may ask your 10-years old children to

complete the pattern.

(Btw. such in�nite list in Haskell has a stan-

dard abbreviation: [0 ..].)

The lazy (or non-strict) evaluation se-

mantics, or call-by-need protocol, very

well known for many years in the domain

of functional programming, is usually con-

sidered as something somehow exotic by

the \true programmers", including the spe-

cialists on computer algebra.

All general code in MuPAD, Maple, Ax-

iom, Magma, Reduce etc. is strict, i. e.

the call-by-value is used.

Why?

Probably because the non-evaluating style:

operations upon symbolic data represent-

ing algebraic expressions, irreducible func-

tion calls etc., makes the programmer think

much more about the data structures than

about the evaluation code.

There is a slight methodological confusion

not only between x as a programming vari-

able and x as an algebraic indeterminate,

but also between various \true faces" of

2 sin(x + 1) �

p

y { is it a n-ary tree rep-

resenting this form, or a computer code

which evaluates it? What is the semantics

behind the \love a�air" within the trian-

gle: evaluation, substitution, simpli�ca-

tion?

So, it is better not to think too much about

dynamic processing of computer codes, and

it is better to rely on the strict semantics

(cum grano salis: call by value protocol).

And (IMHO) it is better not to use Mu-

PAD or Maple as the �rst programming

language for beginners. It has been done,

the e�ects were sometimes encouraging,

because it was interesting, but the confu-

sion mentioned above might be harmful.

By the way: both venerable Teams promise

already for years the implementation of

lexical closures. . . Where are we?

Some classical examples: power se-

ries manipulation.

If we represent a power series U = u

0

+

u

1

x+u

2

x

2

+� � � as an in�nite sequence (list)

[u0, u1, u2, ...], the lazy addition term

by term is trivial. It is also easy to multi-

ply such a list by a scalar (let's denote it

by the operator *>) using map:

s *> u = map (s *) u, or

s *> (u0:uq) = (s*u0):(s*>uq)

The multiplication proceeds as follows. We

split the series: U = u

0

+ x�u. Then

U �V = (u

0

+x�u)(v

0

+x�v) = u

0

�v

0

+x(u

0

�v+�uv):

or

(u0:uq)*(v0:vq)=u0*v0 : (u0*>vq + uq*v)

The division W = U=V is a rearrangement

of the formula for U =W � V :

(u

0

+ x�u)=(v

0

+ x�v) = w

0

+ x(�u� w

0

�v)=v

where w

0

= u

0

=v

0

.

How to compute W = exp(U)? We know

of course how to di�erentiate ant how to

integrate the series. Cum grano salis:

diff (_:uq) = zipWith (*) uq [1..]

integ cst u = cst : zipWith (/) u [1..]

and knowing thatW

0

= U

0

�W , we construct

exp u@(u0:_) = w

where

w = integ (exp u0) (w * diff u)

We can use similar techniques to compute

U

�

, to invert the series, to implement the

Newton algorithm for solving equations ful-

�lled by series, etc. We repeat: the main

advantage is the extreme compactness of

the code, which remains perfectly legible.

Enough of Haskell. . .

How to do this in MuPAD?

What is good in MuPAD is:

� the genericity (polymorphism) of op-

erations upon domain elements;

� the existence of the hold form.

We have encountered two major obstacles

to implement e�ciently the lazy seman-

tics:

� lack of lexical closures and the neces-

sity of using substitutions, and

� lack of mutable data structures (lists).

In fact, the only mutable data structure

in MuPAD is the domain.

All the other are automatically copied, when

modi�ed by some element assignment: A :=

: : : ; B := A; A[7] := XX; forces immedi-

ately the cloning of the value of B, which

remains at it was before the assignment to

A[7]. This precludes the automatic update

of lazy expressions, i.e. the substitution of

a value for its source thunk.

The presentation below is severely massa-

cred. Lazy lists are just domains in which

linking uses the domain indices:

LZ:=domain(): LZ::NLZ:=0: #(first index)#

makel:=proc(x) local el; begin

el:=new(LZ,x,(LZ::NLZ:=LZ::NLZ+1));

domattr(LZ,el):="BUG! SHOULD NOT HAPPEN!";

el

end_proc:

hd:=proc(x)

begin op(x,1) end_proc:

A non-evaluating tl

ltl:=proc(x) begin domattr(LZ,x) end_proc:

tl:=proc(x) local p;

begin p:=domattr(LZ,x);

if type(p)=DOM_PROC then p:=p();

domattr(LZ,x):=p end_if; p

end_proc:

Transformation into a normal list

take:=proc(n,l) local buf,el,i; begin

buf:=[hd(l)]; el:=l;

for i from 1 to n-1 do

el:=tl(el); if type(el)=DOM_NULL

then break end_if;

buf:=append(buf,hd(el)); end_for;

buf end_proc:

Lazy 'cons'

css:=proc(x,y) option hold; local el;

begin el:=makel(context(x));

domattr(LZ,el):=

subs(proc() begin _y end_proc,_y=y);

el

end_proc:

In�nite repetitions are just trivial cyclic

lists:

alias(cgener(vr,A,B)=

(vr:=makel(A); domattr(LZ,vr):=B)):

lrep:=proc(x) local el;

begin cgener(el,x,el) end_proc:

LZ::zero:=lrep(0): LZ::one:=css(1,lzeros):

There are however some touchy points, and

css is not satisfactory. Suppose we want

to construct lazy mapping, or zipping of

two lazy sequences.

lmap:=proc(f,l) begin

if type(l)=DOM_NULL then null() else

cssa(f(hd(l)),lmap(f,tl(l)),[f,l]) end_if

end_proc:

lzip:=proc(opr,l1,l2) begin

if type(l1)=DOM_NULL or type(l2)=DOM_NULL

then null() else

cssa(opr(hd(l1),hd(l2)),

lzip(opr,tl(l1),tl(l2)),

[opr,l1,l2])

end_if end_proc:

Now we can add lists

lplus:=proc(l1,l2)

begin lzip(_plus,l1,l2) end_proc:

In order to construct the self-propagating

application of the operator, we have to de-

clare that some identi�ers are global vari-

ables (holded), and must be replaced by

the arguments.

cssb:=proc(y,vrs) local m,p,v;

begin v:=context(vrs);

p:=zip(vrs,v,proc(a,b)

begin a=b end_proc);

m:=subs(y,op(p));

subs(proc() begin _y end_proc,_y=m)

end_proc:

cssa:=proc(x,y,vrs) option hold; local el;

begin cgener(el,context(x),cssb(y,vrs));

el end_proc:

There is no problem in de�ning the stan-

dard operations on series.

smult:=proc(u,v) local v0; begin

v0:=hd(v);

cssa(hd(u)*v0,

(v0*tl(u)+smult(u,tl(v))),

[u,v,v0])

end_proc:

...

alias(sintgen(u,l)=

cssb(lzip(proc(x,y)

begin x/y end_proc,

u,lnats),

l)):

sexp:=proc(u) local up,w; begin

up:=sdiff(u);

cgener(w,E^hd(u),sintgen(w*up,[w,up]));

w end_proc:

We see that for compactness we use macros,

and that all this would be much simpler,

had we closures at our disposal. . .

More examples

Rational approximation: Wynn pro-

cess

Given a sequence s

0

; s

1

; s

2

; : : : we can accel-

erate its convergence by the following ele-

gant rationalizing recurrent process, which

generalizes the Aitken procedure:

�

(�1)

n

= 0; �

(0)

n

= s

n

�

(k+1)

n

= �

(k�1)

n+1

+

1

�

(k)

n+1

� �

(k)

n

used not only for numerical sequences but

also to generate the Pad�e approximants

from a given power series. The odd Wynn

iterates are auxiliary only, without any

meaning.

wn:=proc(p,u) local du;

begin

du:=tl(p)+

lmap(proc(x) begin 1/x end_proc,

tl(u)-u);

cssa(p,wn(u,du),[u,du])

end_proc:

wynn:=proc(s) begin wn(LZ::zero,s) end_proc:

We may test the algorithm starting with

a useless � approximation: �=4 = 1�1=3+

1=5 � 1=7 + � � �. After having constructed

the (lazy of course) sequence of partial

sums, the procedure wynn creates an in�-

nite stream of in�nite streams. It su�ces

to take the head of every second element,

and we get [2.666666666, 3.133333333,

3.141391941, 3.141587301, 3.141592505,

3.141592649, 3.141592653, . . .].

Simple consistency might be a pow-

erful generating tool

We present here another example, suggested

in the book Concrete Mathematics of Gra-

ham, Knuth and Patashnik. We will show

how the perturbation of the Stirling asymp-

totic series for the factorial will generate

this series. Asymptotically

n! '

p

2�n(n=e)

n

S(n);

where the series S(n) = (1+a

1

=n+a

2

=n

2

+

: : :) is searched for. If the formula above

holds, it should agree with the recurrence

n! = n � (n� 1)!, from which we deduce

S(n� 1) =

1

e

�

1�

1

n

�

�(n�1=2)

S(n);

or, after introducing x � 1=n:

S

�

x

1� x

�

= G(x)S(x);

where

G(x) = exp

�

�1�

�

1

x

�

1

2

�

log(1� x)

�

:

The correcting factor is easily computable

by our package. We get:

G(x) � 1+x

2

f(x) = 1+

x

2

12

+

x

3

12

+

113

1440

x

4

+

53

720

x

5

+

25163

362880

x

6

+ : : : :

This �xes the 0-th term of S, it must be

1. We write S(x) as 1 + x � A(x) (whose

�rst term we call A

1

, and not A

0

), and we

realize with dismay that the formula

1

1� x

A

�

x

1� x

�

= A(x)+x�f(x)+x

2

f(x)A(x)

is not an algorithm, but a system of equa-

tions, with the unknowns having the same

order on both sides. However, having sub-

tracted A(x) from both sides we obtain

something still ugly, but more \algorith-

mic", at least at the �rst glance:

A

1

1

x

�

1

1� x

� 1

�

+ x �A

2

1

x

1

(1� x)

2

� 1

!

+

x

2

� A

3

1

x

1

(1� x)

3

� 1

!

+ : : : =

= f(x)(1 + x � A(x));

where each factor

1

x

(1=(1�x)

m

�1) is a reg-

ular series. Now the formula looks \su�-

ciently lazy", but it continues to be a sys-

tem of equations for the coe�cients of A.

We propose thus a lazy approach to back-

ward substitution. Suppose we try to �nd

the series u obeying the equation

u

0

g

(0)

(x)

+ x

u

1

g

(1)

(x)

+ x

2

u

2

g

(2)

(x)

+ : : : = b(x);

where g and b are known.

Obviously u

0

= g

(0)

0

� b

0

, and

u

1

h

(1)

(x)

+x

u

2

h

(2)

(x)

+: : : =

1

x

�

b(x) � g

(0)

(x)� u

0

�

;

where h

(k)

= g

(k)

=g

(0)

. The problem is

solved.

We construct the list of coe�cient func-

tions g, and we recklessly apply the above

schema to the equation, \forgetting" that

the right-hand side is not known, but in-

volves A.

We omit the coding details, showing just

the results:

A = 1+

1

12

x+

1

288

x

2

+

�139

51840

x

3

+

�571

2488320

x

4

+

163879

209018880

x

5

+ � � �

to any precision you wish, which is not too

easy to �nd in the popular textbooks.

Schr�oder function for a power series

In several branches of physics or biology

simulation we investigate the behaviour

of iterative processes, which may lead to

chaos, present some universality proper-

ties, etc.

Knowing the basic iteration x

n

! x

n+1

=

U(x

n

), we want to study the n-fold com-

positions of the function U :

x

n

= U

(n)

(x

0

) = U

(

U(: : : U(x

0

) : : :)

)

:

Ernst Schr�oder introduced for a given func-

tion U(x) and a constant w the function

V (x) which solves the following intricate

functional equation

V (U(x)) = wV (x)

We see immediately that

V (U

(2)

(x)) � V (U(U(x))) =

= wV (U(x)) = w

2

V (x)

which by analytic extension gives:

V (U

(�)

(x)) = w

�

V (x)

for any real � (if you know what does it

mean for irrational �). It su�ces to �nd

the reverse of V (x) in order to solve a gen-

eral iteration problem.

Suppose that U is a series with 0 as its

�xed point: U(x) = U

1

x+ U

2

x

2

+ � � �. We

want to construct V (x) = x + V

2

x

2

+ � � �.

Obviously the equation above implies w =

U

1

.

Knuth cites in ACP the solution of Brent

and Traub. We follow them in trying to

solve a more general equation:

V (U(x)) = W (x)V (x) + S(x)

for V (x) = V

0

+ V

1

x + V

2

x

2

+ � � �, given U ,

W , and S as power series. We assume

that U(0) = 0, so U(x) will have the form

U(x) = x

�

U . The idea is to compute the

left-hand side of the generating equation

up to O(x

n

), with n growing to in�nity in

a lazy iterative process.

We begin with V

0

= S(0)=

(

1�W (0)

)

. In

the case of 0=0 we de�ne V

0

= 1. Then of

course, if V (x) is represented as V

0

+ x

�

V ,

we have

�

V (U) =

W

�

U

�

V (U) +

V

0

�

W

�

U

+

�

S

�

U

!

which is again the same (open) recursive

formula.

schroder:=proc(u,w,s)

begin schr(1/tl(u),w,s)

end_proc:

schr:=proc(ur,w,s) local s0,v0,w0,sn;

begin s0:=hd(s); w0:=hd(w);

v0:=(if s0=0 and w0=1 then 1

else s0/(1.0-w0) end_if);

sn:=(v0*tl(w)+tl(s))*ur;

cssa(v0,schr(ur,w*ur,sn),[ur,sn])

end_proc:

The function schr should be local within

schroder, recursive, with global variable ur,

and it should hold its own call. This might

be done in MuPAD by emulating exotic

function calls through special domains with

the func_call attribute, but this would take

us too far.

Using our function, it is quite easy to solve

some homeworks, such as �nding the func-

tional square root of the exponential se-

ries, more precisely: �nd such �(x) that

�(�(x)) = 2(exp(x)�1). The solution (cum

grano salis) is given by

sphi:= 2.0*(exp(lzx) - 1): # lzx=0+x #

tmp:=serinv(schroder(sphi,2,0));

answ:= scompo(tmp,sqrt(2)*sphi);

[0, 1.414213562, 0.2928932188, 0.02137646171,

0.0005415565286, 0.00003308232283,

-0.00001071513544, 0.000004055924908,

-0.000001426153114, 0.0000004635955185,

. . .]

Oh, yes:

If W (x) �W

0

+ x

�

W = U(V (x)), and V

0

= 0,

i. e. V (x) = x

�

V , then of course W

0

= U

0

,

and

�

W =

�

V �

�

U(V)

or

scompo:=proc(u,v)

begin

cssa(hd(u),tl(v)*scompo(tl(u),v),[u,v])

end_proc:

From that we can construct the series in-

version for V (x) = x+ V

2

x

2

+ � � �:

serinv:=proc(v) local t,vt,m;

begin vt:=tl(tl(v));

m:=makel(1); cgener(t,0,m);

domattr(LZ,m):=cssb((-1)*m*m*scompo(vt,t)),

[m,vt,t]);

t end_proc:

Conclusions

As you see, without lexical closures, the

necessity of using the substitutions makes

the lazy coding somehow delicate. More-

over, the memory administration is ine�-

cient. Shall we sit and cry?

No. MuPAD is not a functional language,

and the presented technique is somehow

orthogonal to its design. We shall not

suggest that the lazy techniques should

be more heavily used in MuPAD (or in

Maple, or Axiom), because this simply would

not work. We wanted to show that

� The object-oriented
avour and cod-

ing contraptions (domains etc.) pro-

vide an excellent training �eld for some

experiments in algorithm implementa-

tion, and evaluation semantics.

� People who plan to revamp MuPAD,

or to construct a computer algebra sys-

tem with some new possibilities ensured

by a more elaborate virtual machine,

might take into account some functional

approaches to the algorithm construc-

tion, which seems to be an old, but un-

exploited and still promising domain.

The very process of algorithm design

in the functional sauce is very inter-

esting and elegant. You might use lazy

techniques to test something before op-

timizing its implementation.

