
Implementation aspects and applications of a spellingcorrection algorithmViggo Kann� Rickard Domeij� Joachim Hollman� Mikael Tillenius�Numerical Analysis and Computing ScienceRoyal Institute of TechnologyS�100 44 STOCKHOLMSWEDEN7th May 1998AbstractA method for detecting and correcting spelling errors in Swedish text was presented byDomeij, Hollman and Kann (1994). The objectives were to perform very fast detectionand correction of errors and to use a full size word list. Our implementation of the methodas a C program is called Stava. We have further re�ned this method and implementedranking of corrections using word frequencies and editing distance. We also describehow the method can be used in several applications, for example when extending a part-of-speech lexicon, tagging unknown words, stemming and correcting search questions ininformation retrieval.Keywords: spelling error detection, spelling error correction, Bloom �lter.1 IntroductionHow to automatically detect and correct spelling errors is an old problem. Nowadays, mostword processors include some sort of spelling error detection. The traditional way of detectingspelling errors is to use a word list, usually also containing some grammatical information,and to look up every word in the text in the word list (Kukich, 1992).The main problem with this solution is that if the word list is not large enough, thealgorithm will report several correct words as misspelled, because they are not included in theword list. For most natural languages the size of word list needed is too large to �t in theworking memory of an ordinary computer. In Swedish this is a big problem, because in�nitelymany new words can be constructed as compound words.There is a way to reduce the size of the stored word list by using Bloom �lters (Bloom,1970). Then the word list is stored as an array of bits (zeroes and ones), and only twooperations are allowed: checking if a speci�c word is in the word list and adding a new wordto the word list. Both operations are extremely fast and the size of the stored data is greatlyreduced.�E-mail: viggo@nada.kth.se, domeij@nada.kth.se, joachim@nada.kth.se, d91-mti@nada.kth.se, URLto the project: http://www.nada.kth.se/theory/projects/swedish.html.1

There are two drawbacks to Bloom �lters: there is a tiny probability that a word not inthe word list is considered to be in the word list, and we cannot store any other informationthan the words themselves, for example grammatical information.The word list is stored encoded in a form that is impossible to decode�this is often aprerequisite for commercial distribution. A program that detects exactly the words that arenot in the word list can never protect its word list, no matter how it is encoded. This is becauseit is possible for a modern computer to test, in a few hours, all reasonable combinations ofletters and in that way reconstruct the complete word list, see section 7. Thus the �rstdrawback of Bloom �lters in fact is a crucial advantage, since it makes it possible to protectthe word list. In section 4 we show how to work around the second drawback of Bloom �lters,by storing word frequency information together with the words.We have developed a method for �nding and correcting misspellings in Swedish texts usingBloom �lters. In this paper we describe the method and our implementation of it, called Stava(Kann, 1998). Especially we concentrate on how the spelling error correction suggestions areranked using quantitative linguistic methods. We also mention several applications of ourmethods, besides spelling error detection and correction. Examples of applications that wehave studied are extension and creation of a part-of-speech lexicon, tagging of unknown words,hyphenation of solid compounds, stemming and correction of search questions in informationretrieval.2 Preliminaries2.1 Swedish word formationSwedish is a morphologically rich language compared to English. An ordinary verb in Swedishhas more than ten di�erent in�ectional forms. This makes word listing a heavy task forordinary computers.Most words can also be compounded to form a completely new word. For example, the verbrulla (roll) can combine with skridsko (skate) to form the word rullskridsko (roller skate). Sincewords can combine without limit, it is not even possible to list them. This is a considerableproblem for Swedish spell checkers. A great deal of the tiring false alarms that make Swedishspell checkers impractical are compound words.As the example of Swedish compounding above shows, it is not always possible just to puttwo words together to form a compound. Stem alteration is often the case, which can meanthat the last letter of the initial word stem is deleted or changed, depending (roughly) onwhat part of speech and in�ectional group it belongs to. Between di�erent compound partsan extra -s- is often added. However, individual words tend to behave irregularly, thus makingcompounding hard to describe by general rules.2.2 Bloom �ltersFor a long time, the predominant search method has been hashing. The basic idea is to assignan integer to every search key. These integers are then used as indexes into a table that holdsall the keys. Ideally, there would be a one-to-one correspondence between the integer indexesand the keys, but this is not necessary and is in fact not even desirable in our application.To achieve good results, it is essential that the function which maps search keys to integers2

can be quickly computed and that the integers are distributed evenly over all possible tableindexes.If the problem at hand is simply a test for membership (e.g., to check if a word belongs toa word list), then Bloom �lters (Bloom, 1970) can be used. A Bloom �lter is a special kindof hash table, where each entry is either `0' or `1', and where we make repeated hashings intoa single table (using di�erent hash functions each time).A word is added to the table by applying each hash function to the word and entering `1'sin the corresponding positions (i.e., the integer indices that the hash functions return).To check if a word belongs to the word list, you apply the same hash functions and checkif all the entries are equal to `1'. If not all entries are equal to `1', then the word was not inthe word list.It can happen that a word gets accepted even if it is not in the word list. The reason is thattwo di�erent words may have the same signature, i.e., `1's in the same positions. Fortunately,the probability for such collisions can easily be adjusted to a speci�c application. All we haveto do is to change the size of the table and the number of hash functions.Suppose that the word list consists of n words, that the size of the hash table is m, andthat we use k independent and evenly distributed hash functions. Then the probability thata word not in the word list will be accepted by the Bloom �lter isf(k) = "1� �1� 1m�k�n#kas shown in Domeij, Hollman and Kann (1994). The minimum of this function is f(k) = 2�kwhich is reached when k = � ln 2n � ln�1� 1m� � ln 2 � mn � 0:69 � mn :Example 1 If the word list contains n = 100 000 words and we choose m = 2000 000 asthe size of the hash table, we should choose k = ln2 � 2 000 000=100 000 � 14, i.e., we shoulduse 14 hash functions in the Bloom �lter. The probability that a random word is accepted isf(14) � 6 � 10�5 = 0:006%.3 Compounding and in�ection3.1 Basic structure of the word recognitionIn Stava, compounding and in�ection are handled by an algorithm that uses a list of su�xrules together with three di�erent word lists.1. the individual word list, containing words that cannot be part of a compound at all,2. the last part list, containing words that can end a compound or be an independent word,3. the �rst part list, containing altered word stems that can form the �rst or middle partof a compound.
3

In�ection is handled in a straightforward but unconventional way. We are trying a heuris-tical method to reduce the number of word forms listed, and ensure that all forms of a wordare represented. The last part list presented above does not actually contain all in�ectionalword forms. It only contains the basic word forms needed to infer the existence of the restfrom su�x rules.Both basic word forms and altered word stems are (semi-) automatically constructed froma machine readable dictionary with in�ectional and compound information.
individual word list

last part list

first part list

suffix rulesFigure 1: Look-up scheme for handling of compounding and in�ection.When a word is checked, the algorithm consults the lists in the order illustrated in Figure 1.In the trivial case, the input word is found directly in the individual word list or the last partlist. If the input word is a compound, only its last part is con�rmed in the last part list. Thenthe �rst part list is looked up to acknowledge its �rst part. If the compound has more partsthan two, a recursive consultation is performed. The algorithm optionally inserts an extra-s- between compound parts, to account for the fact that an extra -s- is generally insertedbetween the second and third compound parts.The ending rule component is only consulted if an input word cannot be found neither inthe individual word list nor the last part list. If the last part of the input word matches a rule-ending, it is considered a legal ending under the condition that the related basic in�ectionalforms are in the last part list. In this way, only three noun forms, out of normally eight, mustbe stored in the last part list. The other noun forms are inferred by su�x rules.Example 2 The word docka (doll) belongs to the �rst in�ectional noun class in Swedish, andhas the following in�ectional forms:docka (doll)dockan (the doll)dockor (dolls)dockorna (the dolls)dockas (doll's)dockans (the doll's)dockors (dolls')dockornas (the dolls')For this ending class only docka, dockan and dockor are put in the last part list. We constructthe following su�x rules from which the other �ve forms can be inferred:
4

-orna -a, -an, -or-as -a, -an, -or-ans -a, -an, -or-ors -a, -an, -or-ornas -a, -an, -orConsider the input word porslinsdockorna (porslin=porcelain). The input word cannot befound in the individual word list nor the last part list. Therefore the su�x rules are consulted.The �rst rule above is to be read (somewhat simpli�ed) like this: If the words dock-a, dock-anand dock-or are in the last part list, then the word dock-orna is a legal word.Finally the �rst part list is consulted. There the �rst part of the compound (porslins-) isfound, thus con�rming the legality of the input word.3.2 Improved expressiveness of su�x rulesOur handling of in�ections is a possible source of error. For example, the non-existing worddekorna can be constructed using the rule above since the words deka (degenerate), dekan(dean) and dekor (décor) all exist in Swedish. It is important to design the rules in such away that the number of incorrect words that can be constructed is minimized.There are di�erent ways to obtain better rules. We can include a new su�x on the righthand side of the rule, and at the same time expand the word list with the correspondingin�ectional word forms. Another way is to substitute a new su�x for a su�x on the righthand side. A third method is to include a negated su�x which works in the following way.If the negated su�x S is included, and a word exists in the word list with the su�x S, thenthe rule cannot be applied to that word. In our syntax for su�x rules we precede the negatedsu�x by ~.Example 3 The rule -samma -sam, ~samensays for example that the plural form varsamma of varsam (careful) is a correct word sincevarsam but not varsamen is in the last part list. The negated su�x is added so that Stavashould not accept balsamma of the reason that balsam (balsam) exists. The de�nite formbalsamen is namely also in the last part list.In order to make the su�x rules more expressive we can state that a rule only should beapplicable when the su�x is preceded by a certain letter or if it is not preceded by a certainletter. We use standard Unix regular expression syntax for this.Example 4 Consider the following two rules.[uå]-rna -", -n, -r, ~dde, ~ra[^sxz]-s -", -en, -erThe �rst rule accepts the su�x -rna only if it is preceded by either u or å. Thus basturna (thesaunas) is accepted but not vararna.The second rule accepts the genitive su�x -s when it is not preceded by s, x or z. Thismeans that �lms (�lm's) is accepted but not s�nxs.5

In order to compare di�erent variants of su�x rules we generate all possible words thatcan be constructed from a speci�c rule. Using the -orna rule in example 2, 1 592 words canbe generated, and only two of them are incorrect (dekorna and traktorna). Thus, the error is2=1 592 � 0:13%.3.3 Exception listIt is of course unsatisfactory that a few non-existing words (like dekorna) are accepted bythe algorithm. If we can identify these words we can avoid this problem by putting them inan exception list. This word list should contain all words that are wrongly accepted by thealgorithm presented in section 3.1 and should be searched before any of the other word lists.If the exception list is stored as a Bloom �lter using same hash functions as the individualword list and the last part list, the only extra work when checking a word will be to look ata few (at most k but most often just one or two) positions in an array of bits.Another advantage of introducing an exception list is that we may include words in thelast part list that only exist as last elements and not as whole words. In Swedish there are acouple of such words, for example mässig that is a very common last element in compoundslike a�ärsmässig (businesslike) but cannot be an individual word. If such words are addedboth to the last part list and the exception list, we obtain the desired result.In some cases there are common misspellings that coincide with very uncommon in�ectionalforms of other words. An Swedish example of this is the misspelling parantes of parentes(parenthesis). Unfortunately parantes is the masculine genitive in�ection of parant (stylish).This means that the spelling error detector will accept parantes even if it almost surely is amisspelling. The solution to this problem is to add the word to the exception list.3.4 Su�x rules without errorsThe reason that we have chosen the type of su�x rules described in section 3.1 is that theword lists that we have access to do not contain any paradigm information for the words.Thus we have to rely on that certain in�ectional forms of each word in each paradigm areincluded in the word list. This leads to the problems with overgeneration that were describedabove.If we had access to a word list where each word's paradigm is marked we could use anotherand completely safe type of su�x rules. In the right hand side of each rule we just have onesu�x (for the primary form) and a code for the word's paradigm. In the word list (last partlist) we only store the primary form of each word and attach the code of the paradigm to theend of the word.Example 5 Suppose that the paradigm of the �rst in�ectional noun class in Swedish has thecode 17. Then we include docka17 in the last part list and write the su�x rule for the de�niteplural form as -orna -a174 Spelling error correctionMany studies, see for example Damerau (1964) and Peterson (1986), show that four commonmistakes cause 80 to 90 percent of all typing errors: transposition of two adjacent letters, one6

extra letter, one missing letter, and one wrong letter. A method that has proven to be usefulfor generating spelling correction suggestions is to generate all words that correspond to thesefour types of mistakes, and see which are correct words. Words that are generated in this wayare said to lie at a distance of one from the original word.A problem with the probabilistic method is that when we generate many suggestions for amisspelled word there is a slight possibility that an incorrect word may slip in. It is howeverpossible to reduce such errors to a minimum by introducing a graphotactical table as suggestedby Mullin and Margoliash (1990). This table holds all allowed n-grams, i.e., combinations ofn letters, for some prespeci�ed limit n. We have chosen n = 4 and we store the graphotacticaltable using one bit for every possible 4-gram, `1' if there is a Swedish word that contains the4-gram and `0' otherwise. A word is accepted as correct only if all its 4-grams appear in thetable. In Swedish only a small subset of the n-grams can appear at the beginning of a word,and likewise only a small subset can appear at the end of a word. Therefore we consider thebeginning and end of the word as special letters in the n-grams. A graphotactical table forSwedish constructed in this way will be �lled to about 7 percent.The reasonableness of the generated words is checked both against the Bloom �lter andthe graphotactical table. The words that pass both tests will be suggested as corrections.Example 6 Consider the misspelling strutn. Generate all words within distance one fromthis word, check the words using the graphotactical table and using the Bloom �lter. We willshow below how many words that are left after each stage in this process.1. Transpose two adjacent letters. 5 generated words (tsrutn, srtutn, sturtn, strtun, strunt).After checking the graphotactical table only strunt is left, which will also pass the Bloom�lter.2. Take away one letter. 6 generated words (trutn, srutn, stutn, strtn, strun, strut). Afterchecking the graphotactical table only strut is left, which will also pass the Bloom �lter.3. Insert one letter. 7 � 29 = 203 generated words (7 places to insert one letter and 29letters in the Swedish alphabet). After checking the graphotactical table 6 words areleft (strutan, struten, strutin, struton, strutna, strutne). Only struten will pass the Bloom�lter.4. Replace one letter. 6 � 28 = 168 generated words (6 letters to replace and 28 lettersto replace with). After checking the graphotactical table 13 words are left. Only one(struts) will pass the Bloom �lter.Thus four suggestions will be presented: strunt, strut, struten, and struts, which are all correctSwedish words.For a misspelled word of b letters we generate 59b + 28 words that must be checked. Forb = 10 we thus must check 618 words. If the misspelling itself introduces a 4-gram that is notin the graphotactical table, then the number of words that have to be checked will be reducedto a number smaller than 208, independent of b.One should note that the graphotactical table has to be updated if we allow the user toadd her own words; fortunately, this is easy.In earlier studies of automatic spelling correction, see for instance Takahashi et al. (1990),it has been considered impractical to use word lists larger than about 10 000 words. Usingour methods, it is possible to have extremely large word lists without sacri�cing speed.7

5 Spelling correction with ranking5.1 The need for rankingWhen an interactive spell checker �nds a spelling error, it usually asks the user if and howshe wants to correct the error. A few spelling corrections are then presented. The algorithmsuggested in section 4 will �nd some possible corrections at a distance of one from the originalword. If there are no words at a distance of one, it can compute the words that have a distanceof two from the original word instead. In any case there might be a number of suggestions,and ideally they should be ranked so that the most probable correction is given as the �rstalternative, the second most probable correction as the second alternative and so on. If thealgorithm makes a correct guess, it is easy for the user to make the change.In some cases (for example in OCR and in spelling correction for information retrieval,see section 8.6) there might be need for fully automatic spelling correction, i.e., the programcorrects the errors without asking the user �rst. In this case it is of course very important thatthe algorithm with high probability makes the right choice among the possible corrections.A third possibility is a semi-interactive spelling correction that reports corrections whenit is clear which word the user intended to write, and asks the user when there is no singlecorrection that is signi�cantly more probable than the others. Then the algorithm must beable not just to rank the suggestions but to give them a probability.We have studied the ranking problem under the same objectives as before, i.e. the algo-rithm should be fast and the full size word list is encoded as a Bloom �lter. We found thatthe best result was obtained when we used both a re�ned editing distance and word frequencyinformation for ranking the corrections (Tillenius, 1996).Each correction suggestion is given a penalty, which is a number that tells how (un)probablethis word is as the correction of the misspelled word. The penalty is a combination of an editingdistance penalty and a word frequency penalty.5.2 Re�ned editing distanceThe editing distance penalty is dependent both on the edit operation and the letters surround-ing the place of the operation. For insertion the penalty is dependent on the letter insertedand the letter following it. For deletion the penalty is dependent on the letter deleted and theletter following it. For replacement the penalty is dependent on the new letter and the letterit replaces. For transposing the penalty is dependent on the two letters that are transposed.It should also be an extra penalty for changing the �rst letter in a word since it is uncommonfor the �rst letter to be wrong.These rules can correct all of the normal keyboard typing errors and make it possible tocode their probabilities (e.g. an a is more often mistyped as an s than as a p on a normalkeyboard). The rules are also powerful enough to correct some phonetic errors. Since thecorrelation between spelling and pronunciation is high in Swedish, these rules work quite wellfor most common Swedish phonetic errors. An example is the misspelling gort of gjort (made)that is quite common since the consonant [j] is spelled g more often than gj.The insertion and deletion rules will also take care of doubling and undoubling of conso-nants (e.g. spel $ spell, tik $ tick), which are very common types of errors in Swedish.The penalties can be generated rather easy by collecting statistics of real spelling andtyping errors. 8

5.3 Word frequencyThe word frequency penalty depends on how common the word is in the Swedish language(ideally taken over the text type that the user currently is writing). More common words givea lower penalty. We chose to divide the words into 10 frequency classes named A, B,. . . ,J. Theword frequencies were stored in a separate Bloom �lter where each word was concatenatedwith the letter corresponding to its frequency class. For example the very common word och(and) is in frequence class A and is thus stored in the Bloom �lter as ochA. In this way thefrequency class of a word can be found by at most 10 look-ups in the Bloom �lter.5.4 Evaluation of our rankingAn evaluation of the ranking method on 729 misspelled words shows that it �nds the cor-rect correction in 60% of the cases, see table 1. This is very good, especially taking intoconsideration that only 78% of the corrections were included in the word list of the program.Method 1 2 3none 204 (28%) 71 (10%) 16 (2%)word freq. 356 (49%) 42 (6%) 26 (4%)edit dist. 388 (53%) 55 (8%) 16 (2%)edit dist.+word freq. 440 (60%) 28 (4%) 10 (1%)Table 1: Performance of di�erent spelling correction methods tested on 729 mis-spelled words. The columns 1, 2 and 3 tell whether the correct word was the�rst, second or third suggestion. None means that no ranking was performed, thesuggestions were presented in the order they were generated.We also tried to use word bigrams to rank the suggestions, but this was not successful. Thereason was that most correct bigrams were not included in the bigram database (containing200 000 bigrams) that we used. Word bigrams might work better on tests with a smallervocabulary. We did not try to use word class tag bigrams, which perhaps would improve theranking if word tags are available (see also section 8.3).6 Our implementation: StavaWe have implemented the algorithms for spelling error detection, correction and ranking thatwe have described as a C program of 4 000 lines. The program is called Stava. Documentationand a test version of Stava are available on the web (Kann, 1998).In the following we will describe and discuss some implementation aspects.6.1 Word lists and su�x rulesWe have used many sources of Swedish words for Stava. The main source is the word listof the Swedish Academy (1986) with 120 000 words and information about in�ections. Forthe word frequency list we have used a source consisting of 200 000 words collected from anewspaper corpus of 1 000 000 words composed by Språkdata at the University of Gothenburg.9

The last part list consists of about 100 000 words, the �rst part list of about 25 000 words,the individual word list of about 1 000 words and the exception list of about 200 words.There are about 1 000 su�x rules in Stava. When constructing the rules we have usedthe Swedish morphology as described by Hellberg (1978). The rules are sorted by the su�xon the left hand side reversed (from right to left). This means that we can use binary searchwhen looking for rules that match a given word. About 500 000 words can be constructedfrom the su�x rules using the last part list.When su�x rules are matched against a word it often happens that the same word has tobe looked up in the last part list several times. In order to minimize the number of look-upswe have a special cache that remembers the last look-ups and their results.6.2 Optimization of the hash functionsEvery hash function in the Bloom �lters has the following basic structure, where cj is theASCII-value1 associated with the jth character in the word w, jwj is the total number ofcharacters in w, and pi is a prime smaller than the size of the hash table.hi(w) = jwjXj=1 2(j�1)�7 cj mod pi:The main part of the execution time (more than 80%) is spent on computing the hashfunctions. Therefore it is very important to speed up the computation of hi(w). First wenoted that the most time-consuming operation is the mod computation, since the remaindertaking hides a division. We tried to do get rid of the division by precomputing 1=pi once forall and using �oating number multiplication instead of remainder taking. This improved thetotal running time by a factor of two.Next improvement was done by performing mod once per hashing instead of once for eachcharacter. This is possible without over�ow for short words, but if the program is run on thesame computer as the Bloom �lter is built we can in fact forget about over�ow�the importantthing is that the computed hash value is the same each time. This improved the running timeby another factor of two.Now we wanted to get rid of the mod operation completely. If we choose the hash tablesize as an exponent of 2, the mod operation can be performed by a simple and extremely fastbit mask. This would destroy the even distribution of the above hash function, so we had tochange to a hash function that mixes all the bits of the hash value so that taking just the lastbits still gives an even distribution. For this we used a hash function constructed by Jenkins(1997).Finally we observed that the same hash functions (mod di�erent numbers) are computedtwice, since a word is searched both in the individual word list and in the last part list. Whenwe had changed the program so that we reused earlier computed hash values we had made atotal optimization by a factor of ten with respect to the unoptimized program.6.3 Performance of our methodHere are some notes on the performance of the current implementation of our method. Thecomputer used is a Sun Sparcstation 10, a Unix machine comparable to a Pentium PC.1You can of course use character set maps other than ASCII.10

Figure 2: Web interface for Stava.� looking up words in the individual word list and the last part list only: 80 000 words/sec,� general spelling detection (including compounding and in�ection): 10 000 words/sec,� spelling error correction and ranking: 100 words/sec.6.4 User interfaceAlthough the user interface of the spell checker has not been a major part of the project, wehave developed four di�erent interfaces and an API (programming interface).1. Unix command line interfaceThe original user interface to Stava was modeled on the Unix standard utility Spell.On the command line a text �le name is given and then it is spell checked and themisspelled words are output. If the option -r is given, spelling correction suggestionsare also output. There exist several other options that control the behaviour of thespelling correction (Kann, 1998).2. Emacs interfaceWe have written a simple interface for the editor Emacs. A single word or a whole bu�er(�le) can be interactively spell checked. When a misspelling is found the user has thepossibility to change it. 11

Figure 3: X graphical user interface for Stava.3. Web interfaceOur web interface (Kann, 1998) can spell check words given in the web form, a text �leon the user's computer or a web page anywhere in the world, see �gure 2. The resultmay either be a list of misspellings (maybe with correction suggestions) or the wholetext where the misspelled words are blinking. If you click on a misspelled word you willsee the correction suggestions.4. Graphical user interface for XA computer science student has designed and implemented a graphical user interfacefor the X window system, running on both Solaris and Linux (Johansson, 1997). Theuser interface is designed so that the spell checking process should be as fast as possible.Instead of the ordinary processing of one misspelling at a time, many misspellings arepresented at the same time, see �gure 3. Since many of the reported misspellings arein fact correct words (but unknown to the program) the spell checking of the documentwill become much faster.5. Programming interface (API)In order to be able to use Stava in other applications we have constructed a simpleprogramming interface consisting of the four simple procedures shown in �gure 4.7 Retrieving the word listAny spelling error detection program's word list can be retrieved using the following algorithm.Generate all possible combinations of letters (using the graphotactical table to throw awayimpossible words) and input them to the spelling error detection program. Note which wordsthe program accepts. These words form the word list.12

/* StavaReadLexicon must be called before any other function in the API. *//* Returns 1 if the initialization succeeds and 0 otherwise. */int StavaReadLexicon(int compound, /* 1 to allow compound words */int suffix, /* 1 to apply suffix rules */int abbrev, /* 1 to add abbreviation word list */int name, /* 1 to add name list */int comp, /* 1 to add list of computer words */int correct); /* 1 to be able to correct words *//* StavaAddWord adds a word to one of the word lists of Stava. This means* that in the future the word will be accepted. There are three types of* word lists:* E - (Ending) for words that may appear alone or as last part of compound* Examples: medium, fotboll, blåare* F - (First) for words that may appear as first or middle part of compound* Examples: medie, fotbolls, blå* I - (Individual) for words that may appear only as individual words* Examples: hej, du* Returns 1 if word could be stored and 0 otherwise. */int StavaAddWord(unsigned char *word, /* the word to be entered */char type); /* word list type *//* StavaWord checks if a word is correctly spelled.* Returns 1 if the word is correctly spelled and 0 otherwise. */int StavaWord(const unsigned char *word); /* word to be checked *//* StavaCorrectWord checks if a word is correctly spelled and returns* ordered proposals of replacements if not. The most likely word is* presented first.* Before StavaCorrectWord is called the first time StavaReadLexicon* must have been called with the parameter correct=1.* Returns NULL if the word is correctly spelled and a string of* proposed replacements otherwise. If no proposed replacement is* found the empty string is returned. */unsigned char *StavaCorrectWord(const unsigned char *word); /* word to be corrected */Figure 4: Programming interface for Stava.
13

If the spelling error detection is exact, we have retrieved the word list exactly, but if it isprobabilistic, we have got a word list that contains some errors.If we use the algorithm of our spelling error detection program, we will get about 2%nonsense words, which will make the word list useless for other applications.This error rate should not be confused with the probability that a misspelled word isaccepted by the Bloom �lter, which is 0.006% in our program.8 ApplicationsIn this paper we have seen that our methods give a good spelling error detection and correctionfor Swedish. We have also used these methods successfully in several other applications.8.1 Using the method on other languages than SwedishThe spelling detection and correction method described in this paper is not limited to Swedish.We have successfully used it with an English word list and some very simple su�x rules. Wehave also shown (but not implemented) that the method is suitable for Russian with its quitecomplicated in�ections (Engebretsen, 1997; Axensten, 1997).If the method is to be used on a language where in�ections change letters at the beginningor middle of the word and not just at the end, the su�x rule language has to be extended,but this should be straightforward.8.2 Spelling correction of optically scanned documentsCorrection in connection with OCR is in many ways di�erent from the ordinary spellingcorrection described in section 4. Not only are we faced with typing errors, but also errorsdue to imperfections in the text recognition device used. Even a high quality system with acharacter recognition accuracy rate as high as 99% may result in a mere 95% word recognitionaccuracy rate, because one error per 100 characters equates to roughly one error per 20 words,assuming �ve-character words.In an optically scanned document we can expect similar looking characters, or groups ofcharacters, such as: `O'-`0', `I'-`1'-`l', `A'-`.4', and `a'-`å'-`ä'-`á'-`à', to cause problems. Thisis a common source of error, especially in a language such as Swedish where `å', `ä', and`ö' are very common �real� letters, i.e., not simply `a', and `o' with diacritical marks. Ourinvestigations suggest that roughly half of the errors in optically scanned Swedish texts are ofthis type.It is natural to choose a metric, i.e. a measure of distance between words, di�erent fromthe one used for (directly) touch-typed texts.8.3 Creating a part-of-speech lexiconBuilding a complete part-of-speech lexicon where each word is tagged with syntactic categoryand in�ectional morphological features is an extremely hard and time-consuming work. Thework will diminish drastically when using Stava's su�x rules extended with tagging informa-tion. All in�ected forms of all regularly in�ected words may be constructed automatically.Example 7 The word dockas is either the genitive of the noun docka (doll) or the passive ofthe verb docka (dock). This is re�ected by the following two su�x rules in Stava.14

-as -a, -an, -or-as -a, -adeIf these rules are extended with the tags nn.utr.sin.ind.gen and vb.inf.sfo, vb.prs.sfo2 respec-tively we can use the ordinary su�x rule search of Stava to conclude that dockas should betagged with the three tags nn.utr.sin.ind.gen, vb.inf.sfo, vb.prs.sfo.Furthermore, by starting from the original last part list we can generate a part-of-speechlexicon. However, there are two problems with this approach: �rst there are no su�x rulesfor the in�ections that are in the last part list (for example docka, dockan and dockor), andsecondly there are no su�x rules at all for irregularly in�ected words and words that are notin�ected at all.We can deal with the �rst problem by simply adding su�x rules also for the in�ectionsincluded in the last part list. This can be done automatically by adding su�x rules for allsu�xes that appear positively on the right hand side of the rule.Example 8 For the noun su�x rules in the example above we add the following rules.-a -a, -an, -or nn.utr.sin.ind.nom-an -a, -an, -or nn.utr.sin.def.nom-or -a, -an, -or nn.utr.plu.ind.nomThe second problem cannot be solved automatically. The irregular words and words with-out in�ections have to be tagged by hand. Fortunately these are not so many in Swedish.Less than 3% (3 000 of 100 000) of the words in our last part list are of this type.In Swedish all words in the open word classes can be in�ected, which means that thenumber of words that have to be tagged by hand is constant.Also note that the tagged su�x rules described above also can be used to extend an existingpart-of-speech lexicon with tags for words that already are included in the lexicon. Often justthe common tags for a word are included, even if uncommon tags might be necessary to knowin order to be sure that the correct tagging of a word is in the lexicon.8.4 Finding the parts of a compound word in hyphenationIn Swedish solid compounds can be very long, so there is a large need for hyphenation ofcompound words. The Swedish hyphenation rules say that a compound preferably should behyphenated between the elements. This means that a Swedish hyphenation algorithm cannotonly consist of local hyphenation rules. It must be able to split a compound in its elements.We have used the method described in section 3 for doing this. In Stava a compound isaccepted if there is a way to split it into one or more elements in the �rst part list and oneelement in the last part list. If there are more than one way to split a compound every possiblesplit is investigated and the best one is chosen. We have found that a split consisting of fewelements and where the last element is long is often the correct split.Therefore we used the following objective function for choosing between di�erent splittings.Maximize [(number of characters of last element) � 3 � (number of elements)]2We have used the Swedish tagging system de�ned in the SUC project (Ejerhed et al., 1992).15

Using the above objective function on a list of 66 000 compounds 95.5% of the compoundswere split correctly, 3.0% were split incorrectly, and 1.5% were not split at all.In order to choose splits like kvarts-ur (quartz watch) instead of kvart-sur (something likequarter sour), that is the letter s is moved to the �rst part instead of the last part in spite ofthat this gives a shorter last part, we changed the algorithm so that it prefers the �rst splitting.Unfortunately the gain was only 0.03 % (227 more words were now correctly hyphenated, butat the same time 202 words got incorrectly hyphenated).8.5 Part-of-speech tagging of unknown wordsA part-of-speech tagger typically has a lexicon consisting of words and possible taggings ofthese words (for example constructed automatically using the methods in section 8.3). Whentagging a new text there might be unknown words, i.e. words that are not in the lexicon. Thepossible tags of these unknown words have to be guessed.In Swedish the unknown words can be divided into three main groups: new compounds,proper nouns (names) and uncommon simple words (usually technical terms or dialectalwords).A compound can be split into its elements using the method in section 8.4. The taggingof a Swedish compound is decided by the tagging of its last element, so if the last element isin the lexicon we can just look up the tags.Proper nouns can be separated from uncommon simple words in most cases since theirinitial letter is a capital. Otherwise we have to guess the tags from the word's appearance insome way. A good way is to use the su�x rules again. They contain both su�xes and tags,so we can look at the last few letters of the word, see if any su�x rules apply and return thecorresponding tags. If we have some frequency statistics on the rules we will be able to guesswhich tag is the most probable.8.6 Stemming and spelling correction in information retrievalA common approach for an information retrieval system is to process the search question aswell as the documents by removing all non-signi�cant words (using a stop list) and stemmingthe rest of the words so that di�erent in�ections of a search term in the question and in thedocument does not matter.The su�x rules in Stava can be used for stemming. When a word matches a su�x rulewe can transform it into primary form by using the �rst su�x on the right hand side of therule. The problem with in�ectional forms that are already in the last part list is solved byadding su�x rules as described in section 8.3.Spelling correction can also be used in information retrieval. Up to a third of the searchterms given to web search engines are misspelled. Also a large number of documents avail-able in any given database contain misspelled terms. Since the number of untrained andnovice users and low-budget text producers is increasing, the need for spelling correction ininformation retrieval will probably increase in the future.The users can for example be o�ered interactive spelling correction of misspelled searchterms. This would improve search results both as regards precision and recall. Spellingcorrection of the indexed documents will also improve the search results, but if this should bepractically useful the correction has to be fully automatic.16

We have used Stava's spelling correction method in the web version of Skolverket'sSwedish-English dictionary (Skolverket, 1997) which contains 28 500 Swedish words. Everyday about 20 000 questions are asked to the web dictionary. Of these 20% are misspelled. For33% of the misspellings a single search key is at closest distance to the misspelling, so thequestion can be corrected automatically.9 Directions for future researchWe have shown that the Stava method is powerful enough to detect spelling errors and toconstruct and rank spelling corrections very fast. A shortcoming of the method is that itonly �nds spelling errors where the misspelled word is not a correct Swedish word. In manymisspellings, especially of short words, the misspelled word coincides with a correct word, forexample för (for) is easily misspelled as frö (seed).A probabilistic tagger that uses word and tag frequences as well as tag bigrams and trigramsmight be able to �nd many misspellings of this type. We will investigate this in a new project.Especially we will look at the special case of compound splitting when for example bokhylla(bookshelf) is written as bok hylla. This type of spelling error has become more common inSwedish, probably due to English in�uences. By looking at the syntactic categories andfrequences of both the separate words and the compound we hope to be able to �nd mostcases of compound splitting.In the new project we will try to detect and correct grammatical errors. When correcting agrammatical error where a word has got wrong in�ectional form we know which tag the wordhas and which it should have. Thus we can once again use Stava's su�x rules to constructthe correction.Having access to the tagging of the words in the document and tag frequences makes italso possible to improve the ranking of ordinary spelling corrections.10 AcknowledgementsThe research has been funded in the Language Engineering program (Språkteknologiprogram-met) by HSFR and Nutek.We would like to thank Språkdata at the University of Gothenburg and Svenska Akademienfor letting us use Svenska Akademiens ordlista as a source for words in Stava, and Per Hedelinfor letting us use the SUL word list for evaluation purposes.ReferencesP. Axensten. Stava ryska adjektiv (Spell Russian adjectives). Technical report, Departmentof Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm,1997. In Swedish. Available in WWW fromhttp://www.nada.kth.se/theory/projects/swedish.html.B. H. Bloom. Space/time trade-o�s in hash coding with allowable errors. Communicationsof the ACM, 13(7):422�426, 1970.F. J. Damerau. A technique for computer detection and correction of spelling errors. Com-munications of the ACM, 7(3):171�176, 1964.17

R. Domeij, J. Hollman, and V. Kann. Detection of spelling errors in Swedish not using aword list en clair. J. Quantitative Linguistics, 1:195�201, 1994.E. Ejerhed, G. Källgren, O. Wennstedt, and M. Åström. The linguistic annotation systemof the Stockholm-Umeå corpus project. Technical Report DGL-UUM-R-33, Department ofGeneral Linguistics, University of Umeå, Umeå, 1992.L. Engebretsen. De ryska böjningsmönstrens betydelse vid maskinell rättstavning (The in�u-ence of Russian paradigms on spelling correction). Technical report, Department of NumericalAnalysis and Computing Science, Royal Institute of Technology, Stockholm, 1997. In Swedish.Available in WWW from http://www.nada.kth.se/theory/projects/swedish.html.S. Hellberg. The Morphology of Present-Day Swedish. Almqvist & Wiksell, Stockholm, 1978.R. J. Jenkins. Dr Dobb's J., 22(9):107�109, 1997.E. Johansson. E�ektiv och användarvänlig svensk rättstavning under linux (E�cient anduser friendly Swedish spelling correction for Linux). Technical Report TRITA-NA-E9757,Department of Numerical Analysis and Computing Science, Royal Institute of Technology,Stockholm, 1997.V. Kann. Stava's home page, 1998. http://www.nada.kth.se/stava/.K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys,24(4):377�439, 1992.J. K. Mullin and D. J. Margoliash. A tale of three spelling checkers. Software�Practice andExperience, 20(6):625�630, 1990.J. L. Peterson. A note on undetected typing errors. Communications of the ACM, 29(7):633�637, 1986.Skolverket. Lexin Swedish-English dictionary. Norstedts, Stockholm, 1997. Web versionavailable at http://www.nada.kth.se/skolverket/swe-eng.html.Svenska Akademien (The Swedish Academy). Ordlista över svenska språket (SAOL).Norstedts Förlag, Stockholm, 11th edition, 1986.H. Takahashi, N. Itoh, T. Amano, and A. Yamashita. A spelling correction method and itsapplication to an OCR system. Pattern Recognition, 23(3/4):363�377, 1990.M. Tillenius. E�cient generation and ranking of spelling error corrections. Technical Re-port TRITA-NA-E9621, Department of Numerical Analysis and Computing Science, RoyalInstitute of Technology, Stockholm, 1996.
18

