Implementation aspects and applications of a spelling
correction algorithm

Viggo Kann* Rickard Domeij* Joachim Hollman* Mikael Tillenius*
Numerical Analysis and Computing Science
Royal Institute of Technology
S5-100 44 STOCKHOLM
SWEDEN

7th May 1998

Abstract

A method for detecting and correcting spelling errors in Swedish text was presented by
Domeij, Hollman and Kann (1994). The objectives were to perform very fast detection
and correction of errors and to use a full size word list. Our implementation of the method
as a C program is called STAVA. We have further refined this method and implemented
ranking of corrections using word frequencies and editing distance. We also describe
how the method can be used in several applications, for example when extending a part-
of-speech lexicon, tagging unknown words, stemming and correcting search questions in
information retrieval.

Keywords: spelling error detection, spelling error correction, Bloom filter.

1 Introduction

How to automatically detect and correct spelling errors is an old problem. Nowadays, most
word processors include some sort of spelling error detection. The traditional way of detecting
spelling errors is to use a word list, usually also containing some grammatical information,
and to look up every word in the text in the word list (Kukich, 1992).

The main problem with this solution is that if the word list is not large enough, the
algorithm will report several correct words as misspelled, because they are not included in the
word list. For most natural languages the size of word list needed is too large to fit in the
working memory of an ordinary computer. In Swedish this is a big problem, because infinitely
many new words can be constructed as compound words.

There is a way to reduce the size of the stored word list by using Bloom filters (Bloom,
1970). Then the word list is stored as an array of bits (zeroes and ones), and only two
operations are allowed: checking if a specific word is in the word list and adding a new word
to the word list. Both operations are extremely fast and the size of the stored data is greatly
reduced.

*E-mail: viggo@nada.kth.se, domeij@nada.kth.se, joachim@nada.kth.se, d91-mti@nada.kth.se, URL
to the project: http://www.nada.kth.se/theory/projects/swedish.html.

There are two drawbacks to Bloom filters: there is a tiny probability that a word not in
the word list is considered to be in the word list, and we cannot store any other information
than the words themselves, for example grammatical information.

The word list is stored encoded in a form that is impossible to decode—this is often a
prerequisite for commercial distribution. A program that detects exactly the words that are
not in the word list can never protect its word list, no matter how it is encoded. This is because
it is possible for a modern computer to test, in a few hours, all reasonable combinations of
letters and in that way reconstruct the complete word list, see section 7. Thus the first
drawback of Bloom filters in fact is a crucial advantage, since it makes it possible to protect
the word list. In section 4 we show how to work around the second drawback of Bloom filters,
by storing word frequency information together with the words.

We have developed a method for finding and correcting misspellings in Swedish texts using
Bloom filters. In this paper we describe the method and our implementation of it, called STAVA
(Kann, 1998). Especially we concentrate on how the spelling error correction suggestions are
ranked using quantitative linguistic methods. We also mention several applications of our
methods, besides spelling error detection and correction. Examples of applications that we
have studied are extension and creation of a part-of-speech lexicon, tagging of unknown words,
hyphenation of solid compounds, stemming and correction of search questions in information
retrieval.

2 Preliminaries

2.1 Swedish word formation

Swedish is a morphologically rich language compared to English. An ordinary verb in Swedish
has more than ten different inflectional forms. This makes word listing a heavy task for
ordinary computers.

Most words can also be compounded to form a completely new word. For example, the verb
rulla (roll) can combine with skridsko (skate) to form the word rullskridsko (roller skate). Since
words can combine without limit, it is not even possible to list them. This is a considerable
problem for Swedish spell checkers. A great deal of the tiring false alarms that make Swedish
spell checkers impractical are compound words.

As the example of Swedish compounding above shows, it is not always possible just to put
two words together to form a compound. Stem alteration is often the case, which can mean
that the last letter of the initial word stem is deleted or changed, depending (roughly) on
what part of speech and inflectional group it belongs to. Between different compound parts
an extra -s- is often added. However, individual words tend to behave irregularly, thus making
compounding hard to describe by general rules.

2.2 Bloom filters

For a long time, the predominant search method has been hashing. The basic idea is to assign
an integer to every search key. These integers are then used as indexes into a table that holds
all the keys. Ideally, there would be a one-to-one correspondence between the integer indexes
and the keys, but this is not necessary and is in fact not even desirable in our application.
To achieve good results, it is essential that the function which maps search keys to integers

can be quickly computed and that the integers are distributed evenly over all possible table
indexes.

If the problem at hand is simply a test for membership (e.g., to check if a word belongs to
a word list), then Bloom filters (Bloom, 1970) can be used. A Bloom filter is a special kind
of hash table, where each entry is either ‘0’ or ‘1’, and where we make repeated hashings into
a single table (using different hash functions each time).

A word is added to the table by applying each hash function to the word and entering ‘1’s
in the corresponding positions (i.e., the integer indices that the hash functions return).

To check if a word belongs to the word list, you apply the same hash functions and check
if all the entries are equal to ‘1’. If not all entries are equal to ‘1’, then the word was not in
the word list.

It can happen that a word gets accepted even if it is not in the word list. The reason is that
two different words may have the same signature, i.e., ‘1’s in the same positions. Fortunately,
the probability for such collisions can easily be adjusted to a specific application. All we have
to do is to change the size of the table and the number of hash functions.

Suppose that the word list consists of n words, that the size of the hash table is m, and
that we use k independent and evenly distributed hash functions. Then the probability that
a word not in the word list will be accepted by the Bloom filter is

-2

as shown in Domeij, Hollman and Kann (1994). The minimum of this function is f(k) = 27*
which is reached when

~0.69- 2.
n

k:_—n-ln(l—%) ~In2-

Example 1 If the word list contains n = 100000 words and we choose m = 2000000 as
the size of the hash table, we should choose k = In2-2000000/100000 ~ 14, i.e., we should
use 14 hash functions in the Bloom filter. The probability that a random word is accepted is
f(14) = 6-10"° = 0.006%.

In2 m
n

3 Compounding and inflection

3.1 Basic structure of the word recognition

In STAVA, compounding and inflection are handled by an algorithm that uses a list of suffix
rules together with three different word lists.

1. the individual word list, containing words that cannot be part of a compound at all,
2. the last part list, containing words that can end a compound or be an independent word,

3. the first part list, containing altered word stems that can form the first or middle part
of a compound.

Inflection is handled in a straightforward but unconventional way. We are trying a heuris-
tical method to reduce the number of word forms listed, and ensure that all forms of a word
are represented. The last part list presented above does not actually contain all inflectional
word forms. It only contains the basic word forms needed to infer the existence of the rest
from suffix rules.

Both basic word forms and altered word stems are (semi-) automatically constructed from
a machine readable dictionary with inflectional and compound information.

individual word list

f

irst part list

Figure 1: Look-up scheme for handling of compounding and inflection.

When a word is checked, the algorithm consults the lists in the order illustrated in Figure 1.
In the trivial case, the input word is found directly in the individual word list or the last part
list. If the input word is a compound, only its last part is confirmed in the last part list. Then
the first part list is looked up to acknowledge its first part. If the compound has more parts
than two, a recursive consultation is performed. The algorithm optionally inserts an extra
-s- between compound parts, to account for the fact that an extra -s- is generally inserted
between the second and third compound parts.

The ending rule component is only consulted if an input word cannot be found neither in
the individual word list nor the last part list. If the last part of the input word matches a rule-
ending, it is considered a legal ending under the condition that the related basic inflectional
forms are in the last part list. In this way, only three noun forms, out of normally eight, must
be stored in the last part list. The other noun forms are inferred by suffix rules.

Example 2 The word docka (doll) belongs to the first inflectional noun class in Swedish, and
has the following inflectional forms:

docka (doll)
dockan (the doll)
dockor (dolls)
dockorna (the dolls)
dockas (doll’s)
dockans (the doll’s)
dockors (dolls’)
dockornas (the dolls’)

For this ending class only docka, dockan and dockor are put in the last part list. We construct
the following suffix rules from which the other five forms can be inferred:

-orna 4 -a, -an, -or
-as ~ -a, -an, -or
-ans ~ -a, -an, -or
-ors ~ -a, -an, -or

-ornas <4 -a, -an, -or

Consider the input word porslinsdockorna (porslin=porcelain). The input word cannot be
found in the indiwvidual word list nor the last part list. Therefore the suffix rules are consulted.
The first rule above is to be read (somewhat simplified) like this: If the words dock-a, dock-an
and dock-or are in the last part list, then the word dock-orna is a legal word.

Finally the first part list is consulted. There the first part of the compound (porslins-) is
found, thus confirming the legality of the input word.

3.2 Improved expressiveness of suffix rules

Our handling of inflections is a possible source of error. For example, the non-existing word
dekorna can be constructed using the rule above since the words deka (degenerate), dekan
(dean) and dekor (décor) all exist in Swedish. It is important to design the rules in such a
way that the number of incorrect words that can be constructed is minimized.

There are different ways to obtain better rules. We can include a new suffix on the right
hand side of the rule, and at the same time expand the word list with the corresponding
inflectional word forms. Another way is to substitute a new suffix for a suffix on the right
hand side. A third method is to include a negated suffiz which works in the following way.
If the negated suffix S is included, and a word exists in the word list with the suffix S, then
the rule cannot be applied to that word. In our syntax for suffix rules we precede the negated

suffix by ~.

Example 3 The rule
-samma < -sam, ~samen

says for example that the plural form varsamma of varsam (careful) is a correct word since
varsam but not varsamen is in the last part list. The negated suffix is added so that STAVA
should not accept balsamma of the reason that balsam (balsam) exists. The definite form
balsamen is namely also in the last part list.

In order to make the suffix rules more expressive we can state that a rule only should be
applicable when the suffix is preceded by a certain letter or if it is not preceded by a certain
letter. We use standard Unix regular expression syntax for this.

Example 4 Consider the following two rules.

[ud]-rna + -g, -n, -r, “dde, “ra
[~sx2]-s -e, -en, -er

The first rule accepts the suffix -rna only if it is preceded by either u or 4. Thus basturna (the
saunas) is accepted but not vararna.

The second rule accepts the genitive suffix -s when it is not preceded by s, z or z. This
means that films (film’s) is accepted but not sfinzs.

In order to compare different variants of suffix rules we generate all possible words that
can be constructed from a specific rule. Using the -orna rule in example 2, 1592 words can
be generated, and only two of them are incorrect (dekorna and traktorna). Thus, the error is
2/1592 =~ 0.13%.

3.3 Exception list

It is of course unsatisfactory that a few non-existing words (like dekorna) are accepted by
the algorithm. If we can identify these words we can avoid this problem by putting them in
an ezception list. This word list should contain all words that are wrongly accepted by the
algorithm presented in section 3.1 and should be searched before any of the other word lists.
If the exception list is stored as a Bloom filter using same hash functions as the individual
word list and the last part list, the only extra work when checking a word will be to look at
a few (at most k£ but most often just one or two) positions in an array of bits.

Another advantage of introducing an exception list is that we may include words in the
last part list that only exist as last elements and not as whole words. In Swedish there are a
couple of such words, for example mdssig that is a very common last element in compounds
like affarsmdssig (businesslike) but cannot be an individual word. If such words are added
both to the last part list and the exception list, we obtain the desired result.

In some cases there are common misspellings that coincide with very uncommon inflectional
forms of other words. An Swedish example of this is the misspelling parantes of parentes
(parenthesis). Unfortunately parantes is the masculine genitive inflection of parant (stylish).
This means that the spelling error detector will accept parantes even if it almost surely is a
misspelling. The solution to this problem is to add the word to the exception list.

3.4 Suffix rules without errors

The reason that we have chosen the type of suffix rules described in section 3.1 is that the
word lists that we have access to do not contain any paradigm information for the words.
Thus we have to rely on that certain inflectional forms of each word in each paradigm are
included in the word list. This leads to the problems with overgeneration that were described
above.

If we had access to a word list where each word’s paradigm is marked we could use another
and completely safe type of suffix rules. In the right hand side of each rule we just have one
suffix (for the primary form) and a code for the word’s paradigm. In the word list (last part
list) we only store the primary form of each word and attach the code of the paradigm to the
end of the word.

Example 5 Suppose that the paradigm of the first inflectional noun class in Swedish has the
code 17. Then we include dockal7 in the last part list and write the suffix rule for the definite
plural form as

-orna <+ -al7

4 Spelling error correction

Many studies, see for example Damerau (1964) and Peterson (1986), show that four common
mistakes cause 80 to 90 percent of all typing errors: transposition of two adjacent letters, one

extra letter, one missing letter, and one wrong letter. A method that has proven to be useful
for generating spelling correction suggestions is to generate all words that correspond to these
four types of mistakes, and see which are correct words. Words that are generated in this way
are said to lie at a distance of one from the original word.

A problem with the probabilistic method is that when we generate many suggestions for a
misspelled word there is a slight possibility that an incorrect word may slip in. It is however
possible to reduce such errors to a minimum by introducing a graphotactical table as suggested
by Mullin and Margoliash (1990). This table holds all allowed n-grams, i.e., combinations of
n letters, for some prespecified limit n. We have chosen n = 4 and we store the graphotactical
table using one bit for every possible 4-gram, ‘1’ if there is a Swedish word that contains the
4-gram and ‘0’ otherwise. A word is accepted as correct only if all its 4-grams appear in the
table. In Swedish only a small subset of the n-grams can appear at the beginning of a word,
and likewise only a small subset can appear at the end of a word. Therefore we consider the
beginning and end of the word as special letters in the n-grams. A graphotactical table for
Swedish constructed in this way will be filled to about 7 percent.

The reasonableness of the generated words is checked both against the Bloom filter and
the graphotactical table. The words that pass both tests will be suggested as corrections.

Example 6 Consider the misspelling strutn. Generate all words within distance one from
this word, check the words using the graphotactical table and using the Bloom filter. We will
show below how many words that are left after each stage in this process.

1. Transpose two adjacent letters. 5 generated words (tsrutn, srtutn, sturtn, strtun, strunt).
After checking the graphotactical table only strunt is left, which will also pass the Bloom
filter.

2. Take away one letter. 6 generated words (trutn, srutn, stutn, strin, strun, strut). After
checking the graphotactical table only strut is left, which will also pass the Bloom filter.

3. Insert one letter. 7-29 = 203 generated words (7 places to insert one letter and 29
letters in the Swedish alphabet). After checking the graphotactical table 6 words are
left (strutan, struten, strutin, struton, strutna, strutne). Only struten will pass the Bloom
filter.

4. Replace one letter. 6-28 = 168 generated words (6 letters to replace and 28 letters
to replace with). After checking the graphotactical table 13 words are left. Only one
(struts) will pass the Bloom filter.

Thus four suggestions will be presented: strunt, strut, struten, and struts, which are all correct
Swedish words.

For a misspelled word of b letters we generate 59b 4+ 28 words that must be checked. For
b = 10 we thus must check 618 words. If the misspelling itself introduces a 4-gram that is not
in the graphotactical table, then the number of words that have to be checked will be reduced
to a number smaller than 208, independent of b.

One should note that the graphotactical table has to be updated if we allow the user to
add her own words; fortunately, this is easy.

In earlier studies of automatic spelling correction, see for instance Takahashi et al. (1990),
it has been considered impractical to use word lists larger than about 10 000 words. Using
our methods, it is possible to have extremely large word lists without sacrificing speed.

5 Spelling correction with ranking

5.1 The need for ranking

When an interactive spell checker finds a spelling error, it usually asks the user if and how
she wants to correct the error. A few spelling corrections are then presented. The algorithm
suggested in section 4 will find some possible corrections at a distance of one from the original
word. If there are no words at a distance of one, it can compute the words that have a distance
of two from the original word instead. In any case there might be a number of suggestions,
and ideally they should be ranked so that the most probable correction is given as the first
alternative, the second most probable correction as the second alternative and so on. If the
algorithm makes a correct guess, it is easy for the user to make the change.

In some cases (for example in OCR and in spelling correction for information retrieval,
see section 8.6) there might be need for fully automatic spelling correction, i.e., the program
corrects the errors without asking the user first. In this case it is of course very important that
the algorithm with high probability makes the right choice among the possible corrections.

A third possibility is a semi-interactive spelling correction that reports corrections when
it is clear which word the user intended to write, and asks the user when there is no single
correction that is significantly more probable than the others. Then the algorithm must be
able not just to rank the suggestions but to give them a probability.

We have studied the ranking problem under the same objectives as before, i.e. the algo-
rithm should be fast and the full size word list is encoded as a Bloom filter. We found that
the best result was obtained when we used both a refined editing distance and word frequency
information for ranking the corrections (Tillenius, 1996).

Each correction suggestion is given a penalty, which is a number that tells how (un)probable
this word is as the correction of the misspelled word. The penalty is a combination of an editing
distance penalty and a word frequency penalty.

5.2 Refined editing distance

The editing distance penalty is dependent both on the edit operation and the letters surround-
ing the place of the operation. For insertion the penalty is dependent on the letter inserted
and the letter following it. For deletion the penalty is dependent on the letter deleted and the
letter following it. For replacement the penalty is dependent on the new letter and the letter
it replaces. For transposing the penalty is dependent on the two letters that are transposed.
It should also be an extra penalty for changing the first letter in a word since it is uncommon
for the first letter to be wrong.

These rules can correct all of the normal keyboard typing errors and make it possible to
code their probabilities (e.g. an a is more often mistyped as an s than as a p on a normal
keyboard). The rules are also powerful enough to correct some phonetic errors. Since the
correlation between spelling and pronunciation is high in Swedish, these rules work quite well
for most common Swedish phonetic errors. An example is the misspelling gort of gjort (made)
that is quite common since the consonant [4] is spelled g more often than gj.

The insertion and deletion rules will also take care of doubling and undoubling of conso-
nants (e.g. spel <> spell, tik «» tick), which are very common types of errors in Swedish.

The penalties can be generated rather easy by collecting statistics of real spelling and
typing errors.

5.3 Word frequency

The word frequency penalty depends on how common the word is in the Swedish language
(ideally taken over the text type that the user currently is writing). More common words give
a lower penalty. We chose to divide the words into 10 frequency classes named A, B,...,J. The
word frequencies were stored in a separate Bloom filter where each word was concatenated
with the letter corresponding to its frequency class. For example the very common word och
(and) is in frequence class A and is thus stored in the Bloom filter as ochA. In this way the
frequency class of a word can be found by at most 10 look-ups in the Bloom filter.

5.4 Evaluation of our ranking

An evaluation of the ranking method on 729 misspelled words shows that it finds the cor-
rect correction in 60% of the cases, see table 1. This is very good, especially taking into
consideration that only 78% of the corrections were included in the word list of the program.

Method 1 2 3

none 204 (28%) 71 (10%) 16 (2%)
word freq. 356 (49%) 42 (6%) 26 (4%)
edit dist, 388 (53%) 55 (8%) 16 (2%)
edit dist.+word freq. 440 (60%) 28 (4%) 10 (1%)

Table 1: Performance of different spelling correction methods tested on 729 mis-
spelled words. The columns 1, 2 and 3 tell whether the correct word was the
first, second or third suggestion. None means that no ranking was performed, the
suggestions were presented in the order they were generated.

We also tried to use word bigrams to rank the suggestions, but this was not successful. The
reason was that most correct bigrams were not included in the bigram database (containing
200000 bigrams) that we used. Word bigrams might work better on tests with a smaller
vocabulary. We did not try to use word class tag bigrams, which perhaps would improve the
ranking if word tags are available (see also section 8.3).

6 Our implementation: STAVA

We have implemented the algorithms for spelling error detection, correction and ranking that
we have described as a C program of 4 000 lines. The program is called STAVA. Documentation
and a test version of STAVA are available on the web (Kann, 1998).

In the following we will describe and discuss some implementation aspects.

6.1 Word lists and suffix rules

We have used many sources of Swedish words for STAVA. The main source is the word list
of the Swedish Academy (1986) with 120000 words and information about inflections. For
the word frequency list we have used a source consisting of 200000 words collected from a
newspaper corpus of 1000 000 words composed by Sprakdata at the University of Gothenburg.

The last part list consists of about 100000 words, the first part list of about 25000 words,
the individual word list of about 1000 words and the exception list of about 200 words.

There are about 1000 suffix rules in STAVA. When constructing the rules we have used
the Swedish morphology as described by Hellberg (1978). The rules are sorted by the suffix
on the left hand side reversed (from right to left). This means that we can use binary search
when looking for rules that match a given word. About 500000 words can be constructed
from the suffix rules using the last part list.

When suffix rules are matched against a word it often happens that the same word has to
be looked up in the last part list several times. In order to minimize the number of look-ups
we have a special cache that remembers the last look-ups and their results.

6.2 Optimization of the hash functions

Every hash function in the Bloom filters has the following basic structure, where ¢; is the
ASCII-value' associated with the j'" character in the word w, |w| is the total number of
characters in w, and p; is a prime smaller than the size of the hash table.

|w]

hi(w) = Z 2U=D7 ¢; mod p;.
j=1

The main part of the execution time (more than 80%) is spent on computing the hash
functions. Therefore it is very important to speed up the computation of h;(w). First we
noted that the most time-consuming operation is the mod computation, since the remainder
taking hides a division. We tried to do get rid of the division by precomputing 1/p; once for
all and using floating number multiplication instead of remainder taking. This improved the
total running time by a factor of two.

Next improvement was done by performing mod once per hashing instead of once for each
character. This is possible without overflow for short words, but if the program is run on the
same computer as the Bloom filter is built we can in fact forget about overflow—the important
thing is that the computed hash value is the same each time. This improved the running time
by another factor of two.

Now we wanted to get rid of the mod operation completely. If we choose the hash table
size as an exponent of 2, the mod operation can be performed by a simple and extremely fast
bit mask. This would destroy the even distribution of the above hash function, so we had to
change to a hash function that mixes all the bits of the hash value so that taking just the last
bits still gives an even distribution. For this we used a hash function constructed by Jenkins
(1997).

Finally we observed that the same hash functions (mod different numbers) are computed
twice, since a word is searched both in the individual word list and in the last part list. When
we had changed the program so that we reused earlier computed hash values we had made a
total optimization by a factor of ten with respect to the unoptimized program.

6.3 Performance of our method

Here are some notes on the performance of the current implementation of our method. The
computer used is a Sun Sparcstation 10, a Unix machine comparable to a Pentium PC.

You can of course use character set maps other than ASCII.

10

File Edit Yiew Go Bookmarks Optiong Directory Window Help

ad o e T e Y e T

Locafion: |?http AAwnw nada. kth. sefstava/

What's Hew?| Whats Coal?| Destinations| Net Search| People | Software |

Stava, version 2.4

Stavningskeontroll av en svensk text, Du kan antingen ange ett filnamn eller en URL 4l dokwrmnentet
som du vill rittstava, Mer information om Stawa kan du hitta hér,

Tillagda specialordlistor; M datatermer, M forkormingar, M nanm.
Typ av fil: (8 text, (HTML, (. TeX.

Endast en felrapport per ord: [
Ge rittelseforslag; @

Typ av kodning: (8 150 88591 (Unix, Windows), (. Mac, { . DOS, { . sjubitskod.

Presentation: [bara felstavningar, (@ hela texten.
Enstaka ord som ska stavningskontrolleras:

URL tll text som ska stavmingskontrolleras:

“'}Jttp-//ww lysator. lin. se/runeberg/fredepis /01 html

Filnarnn £6r text som ska stavningskontrolleras:

Erowse |

|Sndivig| [Sudda hela formuléret
]

=l J = |

Figure 2: Web interface for Stava.

e looking up words in the individual word list and the last part list only: 80000 words/sec,
e general spelling detection (including compounding and inflection): 10000 words/sec,

e spelling error correction and ranking: 100 words/sec.

6.4 User interface

Although the user interface of the spell checker has not been a major part of the project, we
have developed four different interfaces and an API (programming interface).

1. Unix command line interface
The original user interface to STAVA was modeled on the Unix standard utility Spell.
On the command line a text file name is given and then it is spell checked and the
misspelled words are output. If the option -r is given, spelling correction suggestions
are also output. There exist several other options that control the behaviour of the
spelling correction (Kann, 1998).

2. Emacs interface
We have written a simple interface for the editor Emacs. A single word or a whole buffer
(file) can be interactively spell checked. When a misspelling is found the user has the
possibility to change it.

11

Arkiv Installningar

Felstavade ord: Ersattningsord:
Bacchi b brannvin
hénnes

hafven

at

Mangquerar

b

Courage

drom

dro

Jergen GODEKANN ORD

S:L‘-?I“'ﬂlhe NV RATTSTAVNING
Sein

Fiir in ersédttningsord/godkinn ord:

Jag 4r den, som skall tbmma stopet, det &r du som skall sla i, och det
dren j kare Brider, som hafven at hestilla om ilet, at oss intet af
saftene tryta mi. Manquerar oss NG fallerar oss bl; si si
fallerar oss alt Courage. ¥tterligare, Courage! Huru manga érom vi?
Legio, ty vi 4ro manga. Gutar Jergen Puckel! Hej Benjamin Schwalbe!

Figure 3: X graphical user interface for Stava.

3. Web interface
Our web interface (Kann, 1998) can spell check words given in the web form, a text file
on the user’s computer or a web page anywhere in the world, see figure 2. The result
may either be a list of misspellings (maybe with correction suggestions) or the whole
text where the misspelled words are blinking. If you click on a misspelled word you will
see the correction suggestions.

4. Graphical user interface for X

A computer science student has designed and implemented a graphical user interface
for the X window system, running on both Solaris and Linux (Johansson, 1997). The
user interface is designed so that the spell checking process should be as fast as possible.
Instead of the ordinary processing of one misspelling at a time, many misspellings are
presented at the same time, see figure 3. Since many of the reported misspellings are
in fact correct words (but unknown to the program) the spell checking of the document
will become much faster.

5. Programming interface (API)
In order to be able to use STAVA in other applications we have constructed a simple
programming interface consisting of the four simple procedures shown in figure 4.

7 Retrieving the word list

Any spelling error detection program’s word list can be retrieved using the following algorithm.

Generate all possible combinations of letters (using the graphotactical table to throw away
impossible words) and input them to the spelling error detection program. Note which words
the program accepts. These words form the word list.

12

/* StavaReadLexicon must be called before any other function in the API. */
/* Returns 1 if the initialization succeeds and O otherwise. */
int StavaReadLexicon(int compound, /* 1 to allow compound words */

int suffix, /* 1 to apply suffix rules */
int abbrev, /* 1 to add abbreviation word list */
int name, /* 1 to add name list */
int comp, /* 1 to add list of computer words */
int correct); /* 1 to be able to correct words */
/* StavaAddWord adds a word to one of the word lists of Stava. This means
* that in the future the word will be accepted. There are three types of
* word lists:
* E - (Ending) for words that may appear alone or as last part of compound
* Examples: medium, fotboll, blaare
* F - (First) for words that may appear as first or middle part of compound
* Examples: medie, fotbolls, bla
* I - (Individual) for words that may appear only as individual words
* Examples: hej, du

* Returns 1 if word could be stored and O otherwise. */
int StavaAddWord(unsigned char *word, /* the word to be entered */
char type); /* word list type */

/* StavaWord checks if a word is correctly spelled.
* Returns 1 if the word is correctly spelled and O otherwise. */

int StavaWord(const unsigned char *word); /* word to be checked */
/* StavaCorrectWord checks if a word is correctly spelled and returns
* ordered proposals of replacements if not. The most likely word is
* presented first.
* Before StavaCorrectWord is called the first time StavaReadLexicon
* must have been called with the parameter correct=1.
* Returns NULL if the word is correctly spelled and a string of
* proposed replacements otherwise. If no proposed replacement is

* found the empty string is returned. */
unsigned char *StavaCorrectWord(
const unsigned char *word); /* word to be corrected */

Figure 4: Programming interface for Stava.

13

If the spelling error detection is exact, we have retrieved the word list exactly, but if it is
probabilistic, we have got a word list that contains some errors.

If we use the algorithm of our spelling error detection program, we will get about 2%
nonsense words, which will make the word list useless for other applications.

This error rate should not be confused with the probability that a misspelled word is
accepted by the Bloom filter, which is 0.006% in our program.

8 Applications

In this paper we have seen that our methods give a good spelling error detection and correction
for Swedish. We have also used these methods successfully in several other applications.

8.1 Using the method on other languages than Swedish

The spelling detection and correction method described in this paper is not limited to Swedish.
We have successfully used it with an English word list and some very simple suffix rules. We
have also shown (but not implemented) that the method is suitable for Russian with its quite
complicated inflections (Engebretsen, 1997; Axensten, 1997).

If the method is to be used on a language where inflections change letters at the beginning
or middle of the word and not just at the end, the suffix rule language has to be extended,
but this should be straightforward.

8.2 Spelling correction of optically scanned documents

Correction in connection with OCR is in many ways different from the ordinary spelling
correction described in section 4. Not only are we faced with typing errors, but also errors
due to imperfections in the text recognition device used. Even a high quality system with a
character recognition accuracy rate as high as 99% may result in a mere 95% word recognition
accuracy rate, because one error per 100 characters equates to roughly one error per 20 words,
assuming five-character words.

In an optically scanned document we can expect similar looking characters, or groups of
characters, such as: ‘O-‘0’, ‘I-‘1-‘1’, ‘A’-‘.4’, and ‘a’-‘d’-‘4’-‘4’-‘a’, to cause problems. This
is a common source of error, especially in a language such as Swedish where ‘4’, ‘4’, and
‘6’ are very common “real” letters, i.e., not simply ‘a’, and ‘o’ with diacritical marks. Our
investigations suggest that roughly half of the errors in optically scanned Swedish texts are of
this type.

It is natural to choose a metric, i.e. a measure of distance between words, different from
the one used for (directly) touch-typed texts.

8.3 Creating a part-of-speech lexicon

Building a complete part-of-speech lexicon where each word is tagged with syntactic category
and inflectional morphological features is an extremely hard and time-consuming work. The
work will diminish drastically when using STAVA’s suffix rules extended with tagging informa-
tion. All inflected forms of all regularly inflected words may be constructed automatically.

Example 7 The word dockas is either the genitive of the noun docka (doll) or the passive of
the verb docka (dock). This is reflected by the following two suffix rules in STAVA.

14

-as <+ -a, -an, -or
-as <+ -a, -ade

If these rules are extended with the tags nn.utr.sin.ind.gen and vb.inf.sfo, vb.prs.sfo® respec-
tively we can use the ordinary suffix rule search of STAVA to conclude that dockas should be
tagged with the three tags nn.utr.sin.ind.gen, vb.inf.sfo, vb.prs.sfo.

Furthermore, by starting from the original last part list we can generate a part-of-speech
lexicon. However, there are two problems with this approach: first there are no suffix rules
for the inflections that are in the last part list (for example docka, dockan and dockor), and
secondly there are no suffix rules at all for irregularly inflected words and words that are not
inflected at all.

We can deal with the first problem by simply adding suffix rules also for the inflections
included in the last part list. This can be done automatically by adding suffix rules for all
suffixes that appear positively on the right hand side of the rule.

Example 8 For the noun suffix rules in the example above we add the following rules.

-a 4+ -a, -an, -or nn.utr.sin.ind.nom
-an 4 -a, -an, -or nn.utr.sin.def.nom
-or 4+ -a, -an, -or nn.utr.plu.ind.nom

The second problem cannot be solved automatically. The irregular words and words with-
out inflections have to be tagged by hand. Fortunately these are not so many in Swedish.
Less than 3% (3000 of 100000) of the words in our last part list are of this type.

In Swedish all words in the open word classes can be inflected, which means that the
number of words that have to be tagged by hand is constant.

Also note that the tagged suffix rules described above also can be used to extend an existing
part-of-speech lexicon with tags for words that already are included in the lexicon. Often just
the common tags for a word are included, even if uncommon tags might be necessary to know
in order to be sure that the correct tagging of a word is in the lexicon.

8.4 Finding the parts of a compound word in hyphenation

In Swedish solid compounds can be very long, so there is a large need for hyphenation of
compound words. The Swedish hyphenation rules say that a compound preferably should be
hyphenated between the elements. This means that a Swedish hyphenation algorithm cannot
only consist of local hyphenation rules. It must be able to split a compound in its elements.

We have used the method described in section 3 for doing this. In STAVA a compound is
accepted if there is a way to split it into one or more elements in the first part list and one
element in the last part list. If there are more than one way to split a compound every possible
split is investigated and the best one is chosen. We have found that a split consisting of few
elements and where the last element is long is often the correct split.

Therefore we used the following objective function for choosing between different splittings.

Maximize [(number of characters of last element) — 3 - (number of elements)]

*We have used the Swedish tagging system defined in the SUC project (Ejerhed et al., 1992).

15

Using the above objective function on a list of 66 000 compounds 95.5% of the compounds
were split correctly, 3.0% were split incorrectly, and 1.5% were not split at all.

In order to choose splits like kvarts-ur (quartz watch) instead of kvart-sur (something like
quarter sour), that is the letter s is moved to the first part instead of the last part in spite of
that this gives a shorter last part, we changed the algorithm so that it prefers the first splitting.
Unfortunately the gain was only 0.03 % (227 more words were now correctly hyphenated, but
at the same time 202 words got incorrectly hyphenated).

8.5 Part-of-speech tagging of unknown words

A part-of-speech tagger typically has a lexicon consisting of words and possible taggings of
these words (for example constructed automatically using the methods in section 8.3). When
tagging a new text there might be unknown words, i.e. words that are not in the lexicon. The
possible tags of these unknown words have to be guessed.

In Swedish the unknown words can be divided into three main groups: new compounds,
proper nouns (names) and uncommon simple words (usually technical terms or dialectal
words).

A compound can be split into its elements using the method in section 8.4. The tagging
of a Swedish compound is decided by the tagging of its last element, so if the last element is
in the lexicon we can just look up the tags.

Proper nouns can be separated from uncommon simple words in most cases since their
initial letter is a capital. Otherwise we have to guess the tags from the word’s appearance in
some way. A good way is to use the suffix rules again. They contain both suffixes and tags,
so we can look at the last few letters of the word, see if any suffix rules apply and return the
corresponding tags. If we have some frequency statistics on the rules we will be able to guess
which tag is the most probable.

8.6 Stemming and spelling correction in information retrieval

A common approach for an information retrieval system is to process the search question as
well as the documents by removing all non-significant words (using a stop list) and stemming
the rest of the words so that different inflections of a search term in the question and in the
document does not matter.

The suffix rules in STAVA can be used for stemming. When a word matches a suffix rule
we can transform it into primary form by using the first suffix on the right hand side of the
rule. The problem with inflectional forms that are already in the last part list is solved by
adding suffix rules as described in section 8.3.

Spelling correction can also be used in information retrieval. Up to a third of the search
terms given to web search engines are misspelled. Also a large number of documents avail-
able in any given database contain misspelled terms. Since the number of untrained and
novice users and low-budget text producers is increasing, the need for spelling correction in
information retrieval will probably increase in the future.

The users can for example be offered interactive spelling correction of misspelled search
terms. This would improve search results both as regards precision and recall. Spelling
correction of the indexed documents will also improve the search results, but if this should be
practically useful the correction has to be fully automatic.

16

We have used STAVA’s spelling correction method in the web version of Skolverket’s
Swedish-English dictionary (Skolverket, 1997) which contains 28 500 Swedish words. Every
day about 20 000 questions are asked to the web dictionary. Of these 20% are misspelled. For
33% of the misspellings a single search key is at closest distance to the misspelling, so the
question can be corrected automatically.

9 Directions for future research

We have shown that the STAVA method is powerful enough to detect spelling errors and to
construct and rank spelling corrections very fast. A shortcoming of the method is that it
only finds spelling errors where the misspelled word is not a correct Swedish word. In many
misspellings, especially of short words, the misspelled word coincides with a correct word, for
example for (for) is easily misspelled as fro (seed).

A probabilistic tagger that uses word and tag frequences as well as tag bigrams and trigrams
might be able to find many misspellings of this type. We will investigate this in a new project.

Especially we will look at the special case of compound splitting when for example bokhylla
(bookshelf) is written as bok hylla. This type of spelling error has become more common in
Swedish, probably due to English influences. By looking at the syntactic categories and
frequences of both the separate words and the compound we hope to be able to find most
cases of compound splitting.

In the new project we will try to detect and correct grammatical errors. When correcting a
grammatical error where a word has got wrong inflectional form we know which tag the word
has and which it should have. Thus we can once again use STAVA’s suffix rules to construct
the correction.

Having access to the tagging of the words in the document and tag frequences makes it
also possible to improve the ranking of ordinary spelling corrections.

10 Acknowledgements

The research has been funded in the Language Engineering program (Sprakteknologiprogram-
met) by HSFR and Nutek.

We would like to thank Sprakdata at the University of Gothenburg and Svenska Akademien
for letting us use Svenska Akademiens ordlista as a source for words in STAVA, and Per Hedelin
for letting us use the SUL word list for evaluation purposes.

References

P. Axensten. Stava ryska adjektiv (Spell Russian adjectives). Technical report, Department
of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm,
1997. In Swedish. Available in WWW from
http://www.nada.kth.se/theory/projects/swedish.html.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422-426, 1970.

F. J. Damerau. A technique for computer detection and correction of spelling errors. Com-
munications of the ACM, 7(3):171-176, 1964.

17

R. Domeij, J. Hollman, and V. Kann. Detection of spelling errors in Swedish not using a
word list en clair. J. Quantitative Linguistics, 1:195-201, 1994.

E. Ejerhed, G. Killgren, O. Wennstedt, and M. Astrom. The linguistic annotation system
of the Stockholm-Umeé corpus project. Technical Report DGL-UUM-R-33, Department of
General Linguistics, University of Umeé, Umeé, 1992.

L. Engebretsen. De ryska béjningsmonstrens betydelse vid maskinell riattstavning (The influ-
ence of Russian paradigms on spelling correction). Technical report, Department of Numerical
Analysis and Computing Science, Royal Institute of Technology, Stockholm, 1997. In Swedish.
Available in WWW from http://www.nada.kth.se/theory/projects/swedish.html.

S. Hellberg. The Morphology of Present-Day Swedish. Almqvist & Wiksell, Stockholm, 1978.
R. J. Jenkins. Dr Dobb’s J., 22(9):107-109, 1997.

E. Johansson. Effektiv och anvéindarvénlig svensk riattstavning under linux (Efficient and
user friendly Swedish spelling correction for Linux). Technical Report TRITA-NA-E9757,
Department of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm, 1997.

V. Kann. STAVA’s home page, 1998. http://www.nada.kth.se/stava/.

K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys,
24(4):377-439, 1992.

J. K. Mullin and D. J. Margoliash. A tale of three spelling checkers. Software-Practice and
Ezperience, 20(6):625-630, 1990.

J. L. Peterson. A note on undetected typing errors. Communications of the ACM, 29(7):633—
637, 1986.

Skolverket. Lexin Swedish-FEnglish dictionary. Norstedts, Stockholm, 1997. Web version
available at http://www.nada.kth.se/skolverket/swe-eng.html.

Svenska Akademien (The Swedish Academy). Ordlista over svenska spriket (SAOL).
Norstedts Forlag, Stockholm, 11th edition, 1986.

H. Takahashi, N. Ttoh, T. Amano, and A. Yamashita. A spelling correction method and its
application to an OCR system. Pattern Recognition, 23(3/4):363-377, 1990.

M. Tillenius. Efficient generation and ranking of spelling error corrections. Technical Re-
port TRITA-NA-E9621, Department of Numerical Analysis and Computing Science, Royal
Institute of Technology, Stockholm, 1996.

18

