
Conclusions 

In the experimental results given above, the precision 
of 6 hexadecimal digits is approximately statistically 
equivalent to that of 22 binary digits. It must be em- 
phasized, however, that the comparison of average 
accuracies is but one of several methods of  comparison. 
In order to evaluate the relative merits of both systems, 
it is necessary to consider other aspects, such as the 
worst case accuracy and the ability to preserve al- 
gebraic identities. 

Our tests do show the statistical superiority of R- 
mode arithmetic over C-mode in all cases except that of 
mixed sign sums, where the C-mode without guard char- 
acters has an advantage traceable to a slight bias in the 
R-mode. The unbiased R*-mode with guard charac- 
ters, however, is statistically more accurate than the 
C-mode for all of our tests. 

Test results in the simpler cases have been verified 
analytically. In the remaining cases where we failed to 
substantiate the test results analytically, we nevertheless 
feel that the tests provide useful and well-defined in- 
formation. 

We finally note that machine implementations of 
hexadecimal or binary C-mode arithmetic systems using 
0 or 1 guard digits are common. Implementations of a 
binary R-mode, or variations thereof, also exist. How- 
ever, to our knowledge, there are no commercial im- 
plementations of the R*-mode. 
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Introduction 

Suppose that X is a file, each member of which is 
indexed by a key, and that q is a query key possibly not 
in the file. The following types of  searches through file 
X might be necessary: 

Class 0 search. Is the query key in the file? 
Class 1 search. Determine a key in the file which is 

closest to the query key. 
Class 2 search. Determine all keys in the file which 

are closest to the query key. 
The class 0 search is one which is commonly dealt 

with in constructing symbol tables and in retrieving 
records from files. We mention it mainly for compari- 
son purposes. Classes 1 and 2 appear to be less common. 
A few applications immediately suggest themselves, and 
we suspect that others will appear with increasing use 
of the computer as an information retrieval tool. One 
use concerns keys which are possible outcomes of tests 
in large switching networks, such as the Bell System 
No. 1 •ss [3]. Another is the classification of chemical 
compounds, such as in Chemical Abstracts [2]. The 
common feature of these problems is that it is desirable 
to retrieve information, the key of  which is closely re- 
lated to, but not necessarily identical to, a query key. 
The problem has been discussed in [3], but no solutions 
proposed. There are, of course, rather obvious tech- 
niques for handling all of these classes. It is sufficient to 
search through the file from one end to the other, ex- 
amining all keys. In many instances, the file to be 
searched is extremely large, and the exhaustive search 
technique above requires an exorbitant amount  of time. 
Moreover, when the file is extremely large, it will not be 
possible to store it entirely in the main memory of a 
computer. In this case an auxiliary memory must be 
used, and the longer time required to transfer keys from 
auxiliary to main memory lengthens the required search 
time. Thus we are interested in techniques which do not 
require that every key of  the file be examined. When the 
file is stored in auxiliary memory, a few extra calcula- 
tions done in the main memory may make it unneces- 
sary to transfer a substantial number of segments of the 
file between memories. For  emphasis we list: 

Desideratum. We seek for search algorithms which 
do not examine every key of the file during the search 
process. 

With this desideratum in mind, we will consider 
some representations of  the file suitable for storage in 
computer memory and the corresponding search tech- 
niques for handling classes 0, 1, and 2. We denote as 
preprocessing the general endeavor of structuring the 
file, as well as initially storing it in memory. The actual 
search process will be referred to as searching. 

Review of Conventional Techniques 

We begin by introducing some notation which will 
be useful in our discussions. Let X = {xl, x ~ , . . . ,  xn } 

be the set of keys in the file to be searched. Let X'  be 
the space of all possible values which a key could 
assume. 

Let us look at the record for file structuring strate- 
gies and search algorithms for class 0, namely, to deter- 
mine whether a given query key q is in the file. 

Exhaustive Search 
Preprocessing. Store X in memory as a linear list. 
Searching. Sequentially compare q with every key in 

the list. 
When the file X is stored in this manner, any order- 

ing of X is as likely as another. If  q is not in the file, 
then all of the keys in the file must be examined to 
ascertain this. If  q is in X, then on the average only 
(n q- 1)/2 comparisons must be made to locate q. 
The maximum number of comparisons possible here 
is n. 

Binary Search 
Preprocessing. Order X into an ascending sequence 

and store it sequentially in memory. 
Searching. Eliminate one half of  the remaining file 

after comparing the query key with the key in the middle 
position. 

Of course, to use this technique, it is necessary that 
an ordering exist for keys in X. The maximum number 
of comparisons required for class 0 is Flog2(n q- 1 ) 7 ,  
where I-x-1 denotes the least integer greater than or 
equal to x. 

Direct Lookup 
Preprocessing. Associate each key of  X' with a 

distinct location in auxiliary memory. Each location 
contains a flag which is set to "yes"  or " n o "  depending 
on whether or not the associated key is in X. 

Searching. Determine the value of the flag associated 
with key q by direct access. 

This technique is the fastest (when it can be used) 
since only one examination of an item in memory 
suffices. If the set of keys is significantly smaller than 
the set of addresses spanned by them on a direct-access 
device, much space will be wasted. One means of avoid- 
ing this problem is to use "scatter  storage" techniques 
[4]. In certain cases, the time-efficiency of direct access 
6an be approached while wasted space can be reduced, 
if these techniques are used. 

There are nontrivial cases in which class 1 or 2 
searches cannot be handled by these methods. Before 
expounding on this, let us state specifically what we 
mean by "closest" in these situations, and then point 
out the difficulty. The "distance" between two keys, 
x and y, is given by the value of a metric, d(x, y). 
Specifically, a metric is any function d: X r × X'  --~ non- 
negative integers (we say integers for simplicity) such 
that 

(1) for every x, y in X' ,d(x ,  y) = 0 ¢=~ x = y, 
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(2) for every x, y in X', d(x, y) = d(y, x), 
(3) for every x, y, z in X', d(x, z) <_ d(x, y) -b d(y, z). 

The third condition is usually referred to as the triangle 
inequality. Since X is finite, we may assume d takes on 
values from the set {0, 1, 2 , . . . ,  m} for some m. 

A common example of a metric occurs when the 
keys are binary numbers. In this case the "Hamming  
distance" between two keys, defined to be the number 
of bit positions in which the keys differ, is easily shown 
to be a metric. I f  the bits of a key represent those 
"at t r ibutes"  which a member of a file possesses, then 
a class 1 search corresponds to finding a member of 
the file which most closely matches a given list of at- 
tributes, while a class 2 search corresponds to finding 
all such members. Minsky and Papert [3] refer to this 
as the "bes t  match" problem and comment on its 
difficulty. 

Observation 
The reason that conventional techniques for han- 

dling class 0 do not generally suffice for the other classes 
is that the linear order of keys is not significant. Because 
many distinct keys may be at a given distance from a 
query, the key space may assume aspects of a multidi- 
mensional space in either class 1 or class 2. Conventional 
techniques generally are only capable of exploiting a 
one-dimensional key space. 

There are some metrics which are trivial exceptions. 
One is the metric 

d(x ,y)  ~ 1, x ~ y  
-- 0, otherwise. 

Another is the case in which the keys are integer valued 
and d(x, y) = Ix  - y I. The first case degenerates to 
class 0, while binary search may be applied in the 
second. In the more general case, the only "obvious"  
way appears to revert to exhaustive search, which 
fails to meet our desideratum, since in general the 
entire file must be searched. 

The file structures presented here may be viewed 
as what are generally called "clustering techniques." 
Clustering techniques have also been used in conjunc- 
tion with " t e rm classification." A goal of term classi- 
fication is to identify groups of attributes of the keys 
for which most records in the file assign similar values. 
The resulting set of groups of attributes may be used 
to redefine the key space. Such approaches are dis- 
cussed in [5, 6, 7]. They are, in a sense, orthogonal to 
the approach presented here, which assumes that the 
key space is fixed and given a priori. Our attention is 
directed at identifying groups of records whose keys 
possess certain distance relationships. 

Search Techniques for Classes 1 and 2 

Suppose that during the application of a search 
algorithm, b is the "bes t "  key found thus far. That  is, 

for every x E 

Then we may 

for every x E 
for every x E 

In this case, 
for (1): 

k -- d(q, x °) 

b is the key which is known to minimize d(q, x) over 
all keys previously considered. Let ~ = d(q, b). We 
update b with key x by the following procedure: 

Update (b, x). If d(q,x) < ~, then replace b with x, 
and ~ with d(q, x); otherwise do nothing. 

Every update necessitates a comparison. To meet our 
desideratum, we next give some conditions which imply 
that an update is not necessary. The discussion will be 
limited to class 1 for the time being; extension to class 2 
will follow. We need not update with a key x in X if 
it is known a priori that 

d(q, x) >_ ~. (1) 

The cutoff criteria presented next are designed to supply 
sufficient conditions for inequality (1) to be satisfied. 

Let x ° be an element of X, and suppose that Y 
is a subset of X with the property that for some k = 
k(Y,  x°), we have 

for every x E Y, d(x, x °) < k. (2) 

Let us derive a sufficient condit ion for (1), given (2). 
F rom the triangle inequality, 

for every x E Y, d(q, x) >_ d(q, x °) - d(x, x°). (3) 

From (2) and (3) we have 

for e v e r y x  E Y, d(q ,x)  >_ d (q , x  °) -- k. (4) 

Hence the following is a sufficient condition for (1): 

d(q, x °) -- k >_ ~. (5) 

We call this the first cutoff criterion, since if the condi- 
tion is satisfied, the entire subset Y may be eliminated 
from consideration, i.e. " cu t  off." Note that the appli- 
cation of this criterion depends on ~, and is more likely 
to provide a cutoff if ~ is small. 

Suppose that instead of (2), there is a k = k(Y,  x °) 
such that 

Y, d(x, x °) >_ k. (2') 

proceed analogously to obtain 

Y, d(q, x) >_ d(x, x °) - d(q, x°), (3') 
Y, d(q, x) >__ k - d(q, x°). (4') 

the following is a sufficient condition 

We call this the second cutoff criterion. Again this is 
more likely to bear fruit if ~ is small. We may combine 
both of  these criteria if Y satisfies 

for e v e r y x  E Y, d(x ° , x )  = k. (6) 

In this case, a sufficient condition for Y to be elimi- 
nated is 

l k - -  d ( q ,  x°)[ >_ ~. (7) 

We call this the joint cutoff criterion. 
We next give a method which makes use of the 

joint criterion. 
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File Structure 1. Pick an arbitrary element x ° of X. 
Then divide X -- {x ° } into subsets X °, X ~, X 2, . . . , X 'n 
where for all k = 0, 1 , . . .  , m and all x C X k, d(x, x °) = 
k. Each of these subsets is then stored so that one may 
be distinguished from another. Clearly, by the way in 
which the subsets are constructed, the joint cutoff 
criterion can be applied to each. The search algorithm 
for this structure is given below. 

Search Algorithm 1. Using file structure 1, to find 
the best match for query q: 

Step 1. 
Let b = x °, ~ = d(q, x°), and j = d(q, x°). 

Step 2. 
D o S t e p 3 f o r k = j , j +  1,j  - 1 , j  + 2 , j - -  2, . . . 

Step 3. 
(Apply joint cutoff.) If [ k - j [ < 4, do Step 4. 

Step 4. 
Search X k by some algorithm, possibly updating b, 

in the process. 
Step 5. 

Stop. The best match is b. 

For  reasons to be explained presently, Step 4 is pur- 
posely left vague. To make it concrete, let us say that 
the search of X k is done by exhaustive comparison. 

While the order of varying k above is not necessary, 
it does seem to be the most natural, since once the test 
in Step 3 gives a negative answer because k - j >__ ~ and 
a negative answer because j - k >__ ~, the search may 
be terminated; for it is then known that no other 
value of k can give a positive answer. 

Note that the element x ° was chosen arbitrarily. 
We may make use of this fact to structure each set 
X k by picking an element x k,° from X k, then forming 
sets X k,°, X k,t, Xk .~ , . . . ,  such that d(x k,r, x) = r for 
all x in X ~,~. We are then equipped to reapply Algo- 
rithm 1 recursively to X e in Step 4, instead of simply 
using exhaustive search. In fact this recursion may 
be done to any depth desired. 

We next present a different technique in which X is 
again partioned into X 1, X 2 , . . . ,  in which we allow an 
initial comparison with one representative of each 
X ~ to provide cutoff information. 

File Structure 2. Divide X into a number of sets 
X 1,X ~,X 3 . . . .  , X" such that for each i = 1 ,2  . . . .  , s  
there is a key x ~ and a number k ~ such that for each 
x C X i, d (x ~, x) _< k ~. For  simplicity, we will assume 
here that k = k ~ for all i. 

Search Algorithm 2. Using File Structure 2, to find 
the best match for query q: 

Step 1. 
Let b be an arbitrary element of X; let ~ = d(b, q). 

Step 2. 
Compute hi = d(x ~, q), and Update (b, x ~) for 
i = 1 , 2 , . . . , s .  

Step 3. 
For  i varying over 1, 2 , . . . ,  s in order of increas- 
ing h~, do Step 4. 

Step 4. 
(Apply first cutoff criterion.) If  hl - k < ~, then 
search X ~, possibly updating b, ~. 

Step 5. 
Stop. The best match is b. 

As in Algorithm 1, the order of searching the X ~ is not 
important. However in the particular ordering given, 
once the test in Step 4 gives a negative answer, the 
search may be stopped. This algorithm may also be 
applied recursively, provided that k is decreased as the 
level increases. 

We now mention a refinement of Algorithm 2 
which applies when additional structure is added to 
the file. Suppose that Y is a subset of X such that for 
some k 

x, x' C Y implies d(x, x') <_ k. (8) 

(If we consider the file as an undirected graph with 
keys as nodes, such that two nodes x, x'  are connected 
only when d(x, x') <_ k, then such a set Y is commonly 
called complete. A complete set which is maximal, in 
the sense that no additional nodes can be added while 
retaining the complete property, is referred to as a 
clique of the graph. Equivalently, a set Y is a clique if 
the converse of (8) also holds. Any subsequent refer- 
ences to these terms will pertain to this correspondence.) 

If  x ° is any element of Y, we may, by the first cutoff 
criterion, eliminate Y - {x ° } if 

d ( q , x  °) - k >_ ~. (9) 

Suppose that we are searching within a set Y satisfying 
(8). Inequality (9) suggests that as well as updating 
with each key the value ~ as in previous algorithms, 
we also record the maximum value ~ of  d(q, x) - k as 
we search. Then if at some time ~ _> ~ is satisfied (re- 
calling that ~ generally decreases as the algorithm pro- 
ceeds), we may immediately cease the search of Y, 
knowing that no further improvement is possible. We 
call this the clique criterion. Note that it may be applied 
in Algorithm 2 when the X ~ have the clique property. 
We emphasize the distinction that this criterion is 
applied within the search of X ~, whereas the first cutoff 
criterion is applied before the search of X ~. We now 
elaborate on the methods which employ the clique 
criterion. The reader may observe that the methods also 
work when "cl ique" is replaced by "complete  set." 
That is, the sets need not be maximal. 

File Structure 3. Find a set C = {X ~, X 2 , . . .  } of 
cliques such that every key in X is in at least one ele- 
ment of C. An arbitrary element x ~ of X ~ will be desig- 
nated clique representative. The file is stored so that 
cliques in C are distinguishable from each other. It is 
noted that the keys of particular records may appear 
in several cliques. Search Algorithm 2 may be employed 
using this file structure; the clique criterion may be 
utilized within each clique. 

It is noted that as the number of cliques in C de- 
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creases, the total memory for pointers, etc., required by 
this structuring of X decreases. Moreover, it is possible 
to strengthen the notion of a clique representative thus 
decreasing the average number of updates required in 
searching. The idea is to select as representatives those 
keys which are in the greatest number of cliques. The 
following algorithm determines such a set of clique 
representatives. 

Step 1. 
Determine how many elements of C each key of X 
is in. 

Step 2. 
Do Step 3 for i -- 1, 2, . . . until all elements of C 
have been considered. 

Step 3. 
Select any key x ~ in X~-as representative for clique 
X ~ provided x ~ is in no fewer elements of C than 
any other key in X ~. 

Step 4. 
Stop. The set of representatives is {x 1, x 2, . . .  }. 

To utilize this notion of clique representative, the file X 
is stored as blocks {B1, B 2 , . . .  }. Each block Bj con- 
tains all cliques in C with the same clique representa- 
tive xL With common clique representatives, the first 
cutoff criterion can often eliminate several cliques at a 
time in the search process with only one comparison. 
The following algorithm utilizes File Structure 3 with 
the generalized notion of clique representatives. 

Search Algorithm 3. Using File Structure 3, this 
algorithm finds a best match b in X for query key q. 

Step 1. 
Let b be an arbitrary element in X; let ~ = d(q, b). 

Step 2. 
Do Step 3 f o r j  = l, 2, . . . u n t i l  all blocks of X 
have been considered. 

Step 3. 
Update (b, xi); (apply first cutoff criterion) if 
d(q, x j) - k < ~, then do Step 4. 

Step 4. 
Do Step 5 for each clique c in block Bj .  

Step 5. 
Set ~ = 0. Do Step 6 for each x in c while ~ < 
(the clique cutoff criterion). 

Step 6. 
Update (b, x). Set 6 = max (6, d(q, x) - k). 

Step 7. 
Stop. The best match is b. 

All of our simulations involving clique structuring use 
the generalized notion of clique representative. 

Preprocessing Phase 

As mentioned before, all file structuring is done ini- 
tially in a preprocessing phase. We discuss briefly the 
amount of work required in this phase for two of the 
file structures presented. 

File Structure 1. First choose as arbitrary element 
x °. The sets X 1, X ~, . . . a r e  then created by what 
amounts to a sort on the value of d(x °, x) where x 
represents a typical key. The sets X 1, X 2 , . . .  may be 
delineated either by storing a special set of pointers 
for the beginning location of each set, or by storing the 
set of indices with the sets themselves and performing a 
sequential search for the proper group during the search 
algorithm. 

If multiple-level structuring is desired, then this 
process is simply repeated on the individual sets to 
form subsets, and so on. The overall structure may be 
envisioned as a tree as shown in Figure 1. 

Fig. 1. File Structure 1 viewed as a tree. 

0 . o ~ \  m.o 

xO,O xO,!,.xO, m X 1,0 XI.}..XI, m xm,Oxm,l.., xm,  m 

x -  
J 

X 

File Structure 2. (Since File Structure 3 is a more 
structured form of File Structure 2, we omit considera- 
tion of the latter here.) 

File Structure 3. The file is stored in terms of cliques. 
The blocks may be stored sequentially and processed 
one after the other, in which case the active work 
space (memory needed to perform the required compu- 
tations) by the search may be fixed and independent 
of the size of the file. 

In light of previous comments, the set C is deter- 
mined with as few cliques as possible. A minimal cover 
for Xis  a set C of cliques such that: (1) every key in X 
is in at least one element of C; and (2) for no smaller 
set C' does property 1 hold. In terms of economy of 
space, we would like to determine a minimal cover for 
X. A minimal cover for X may be computed by first 
determining the set C of all cliques of the graph (of 
the file) and then extracting a minimal set cover. An 
algorithm known as the Bierstone algorithm for com- 
puting the set of all cliques of an undirected graph is 
given in [8, 9]. 

The following algorithm yields an approximate 
minimal cover. Let C be the set of cliques determined 
by the Bierstone algorithm. Let M be empty and all 
keys be untagged. 

Step 1. 
Do Step 2 while some key is untagged. 

Step 2. 
Determine a clique c in C such that c contains no 
fewer untagged keys than any other clique of C. 
Place this clique in set M and tag all keys of c. 
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Step 3. 
Stop. The set M contains an approximate minimal 
cover. 

We use the adjective "approximate"  here since the 
algorithm described above does not in general yield a 
minimal cover; this approximation is used in all of  our 
simulations since the computation of the minimal cover 
is an extremely time-consuming process. 

File Maintenance 

So far the discussion has centered on fast search 
algorithms for the given file structures. Another problem 
may occur if records must be added or deleted after the 
initial structuring has occurred. Of course the file could 
be restructured ab initio, but this is useful only if addi- 
tions and deletions occur infrequently. We wish to make 
a few remarks here concerning the manner in which 
existing files may be modified without repeating the 
initial structuring. 

In the case of File Structures 1 and 2, the addition 
of a new key simply involves locating the correspond- 
ing set X k and adding the key to this set. If multiple 
levels of structuring are used then this process is 
iterated for each level. If there is no corresponding 
set X k then one must be created with the new key as its 
only element. Of course, once the set X k is found, the 
insertion may or may not be trivial, depending on the 
details of implementation. The point is that the im- 
posed structuring does not cause the insertion process 
to be appreciably more complicated than it would be 
for, say, an indexed-sequential-access file. 

The deletion of a key in Structures 1 and 2 follows 
a process similar to that above, with special considera- 
tion for the case in which the key to be deleted is the 
representative x °. In this case, the key cannot simply be 
deleted, as it is essential for the structure information. 
Instead an extra bit must be used for each key which 
denotes whether the key actually corresponds to a record 
or not. The search algorithm is modified correspond- 
ingly to ignore keys which do not correspond to records. 
This involves testing the extra bit in the Update pro- 
cedure. 

File Structure 3 may be maintained in the manner 
described below. In the discussion, we assume that a 
covering set of  cliques is used as previously described. 
The extensions to other versions will be evident. 

Notice that the addition of a new key to the file 
cannot decrease the number of cliques needed in a 
minimal cover of the file. However, adding a new key 
may necessitate increasing the number of cliques in a 
minimal cover. Consider adding a key ~ to the file. 
We may use the existing file structure to locate a key 
closest to ~. If this key is no closer than k -t- 1, then 
2 is added to the file structure as a clique containing 
only itself. The set of clique representatives is then 
enlarged to include .t. If  the key closest to ~ is closer 

than k -t- I, a complete set may be determined con- 
sisting only of keys contained in the clique containing ~¢. 
This set may be inserted into the cover. The set deter- 
mined in this manner may not be a clique; however, 
as remarked earlier, as long as the newly created set is 
complete, the search algorithm will suffice. 

Obviously, deleting a key 2 from the file can never 
increase the number of cliques in a cover of the file. 
We may use repeated applications of the existing search 
technique to delete copies of ~ in the file. If  R is a 
clique representative, it can be retained as structure 
information and simply be tagged as not being in the 
file, as in the case of the other file structures. 

For  either insertion or deletion, it may be expedient, 
in terms of subsequent performance of the search algo- 
rithm, to redefine the set of clique representatives. Of 
course, this redefinition may necessitate reorganizing 
the block structure of the existing file implementation. 

While the three file structures were conceived with 
time-invariant files in mind, it is seen that they are use- 
ful even in an environment necessitating changing file 
membership. The retrieval performance of  perturbed 
files maintained by these techniques has not been stud- 
ied; however, it seems plausible that for small pertur- 
bations the performance will not be degraded signifi- 
cantly. 

Experimental Results 

The techniques presented here were tried experi- 
mental ly--a total of 1000 keys of 30 bits, each of which 
was obtained using a linear shift register generator [10]. 
The characteristic polynomial of the generator is 1 -I- 
X a q- X 31. The Hamming distance was used as a metric, 
and a number of class 1 experiments were run, each 
using 80 trial queries, none of which exactly matched any 
key in the file. 

Tables I and II compare File Structures and Algo- 
rithms 1 and 3 respectively. It should be emphasized 
that the numerical quantities presented are sensitive 
to arbitrary choices made in the preprocessing phase. 
Another set of experiments was run in which the keys 
were divided in half to produce a file of 2000 keys of  
15 bits each. The results in this case were substantially 
better and are given in Table III. We also show in 
Table III a comparison between class 1 and class 2 
searches. 

We believe that the difference in the results between 
the two key sizes is due to the relative values of the 
size of the file and the number of possible values in the 
key space. For an n-bit key, there are 2 ~ such values. 
The trees with 30-bit keys were run with 200 or 500 
elements in the file, whereas those with 15-bit keys 
were run with 2000 elements in the file. Thus, in the 
latter case, the probability of a closer match is higher, 
and the probability of achieving a cutoff is correspond- 
ingly greater. 
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Table I. Results for File Structure 1, with three levels of 
structuring, and Search Algorithm 1 on 30-bit keys (80 trials 
were used on each file). 

File 
Compo- Num- 
sition ber of 
Key Keys 
Numbers 

401-600 200 
601-800 200 
801-1000 200 
500-1000 500 

Number of Final/~ 
Comparisons/Query Value 

Mean Stand- 
ardDe- Max. Min. 
viation 

(%) (%) (%) (%) 

Max. Min. 

76.9 19.6 100 1.0 9 5 
76.8 28.1 I00 1.0 10 5 
75.7 25.3 100 1.0 9 4 
69.4 21.9 99.2 0.4 9 4 

Table II. Results for File Structure 3 and Search Algorithm 3 
on 30-bit keys (80 trials were used on each file). 

File 
Composition 
Key Numbers 

401-600 
601-800 
801-1000 
501-1000 

Number of Comparisons/Query 
Mean Standard Max. Min. 

deviation 
(%) (%) (%) (%) 

82 9 97 50 
82 10 99 51 
78 11 99 33 
67 11 87 39 

Table III. Results for File Structure 1, with 3 levels of struc- 
turing, and Search Algorithm 1 on 2000 keys of 15 bits each 
(80 trials were used in each case). Final ~ values varied be- 
tween 0 and 2. 

Class 1 Search 
Class 2 Search 

Number of Comparisons/Query 

Mean Max. Min. 
(%) (%) (%) 

13.4 39.2 0.1 
26.7 61.5 0.1 

all cliques of an undirected graph using the Bierstone 
algorithm is an extremely lengthy process. Another 
clique finding algorithm is now known which will 
shorten the process, and the empirical study of  File 
Structure 3 can be completed in a more thorough man- 
ner [11]. 

Summary 

The study described here is concerned with the gen- 
eral problem of efficiently searching files in the following 
situations: (1) find a key in the file closest to a given 
query key, and (2) find all keys in the file closest to a 
given query key. By "closest" we mean according to 
some suitable measure of distance, specifically a "met- 
ric" in the mathematical sense. These situations may 
arise in information retrieval applications in which 
members of a file are keyed to a number of numerically- 
represented attributes. Our search algorithms have the 
following common basis: let b be the "best" key found 
at a certain point in the application of  the algorithm. 
Based on certain "cutoff criteria" which depend on b, 
subsets of the file remaining to be examined are elimi- 
nated without explicitly comparing the keys in these 
subsets with the query key. Our experimental results 
(on randomly-generated flies) indicate that large seg- 
ments of the file may be eliminated from consideration 
using these cutoff criteria. 
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