
Conclusions

In the experimental results given above, the precision
of 6 hexadecimal digits is approximately statistically
equivalent to that of 22 binary digits. It must be em-
phasized, however, that the comparison of average
accuracies is but one of several methods of comparison.
In order to evaluate the relative merits of both systems,
it is necessary to consider other aspects, such as the
worst case accuracy and the ability to preserve al-
gebraic identities.

Our tests do show the statistical superiority of R-
mode arithmetic over C-mode in all cases except that of
mixed sign sums, where the C-mode without guard char-
acters has an advantage traceable to a slight bias in the
R-mode. The unbiased R*-mode with guard charac-
ters, however, is statistically more accurate than the
C-mode for all of our tests.

Test results in the simpler cases have been verified
analytically. In the remaining cases where we failed to
substantiate the test results analytically, we nevertheless
feel that the tests provide useful and well-defined in-
formation.

We finally note that machine implementations of
hexadecimal or binary C-mode arithmetic systems using
0 or 1 guard digits are common. Implementations of a
binary R-mode, or variations thereof, also exist. How-
ever, to our knowledge, there are no commercial im-
plementations of the R*-mode.

Acknowledgment . The authors wish to express their
appreciation to W. Kahan, whose detailed comments on
an early version of this work led to the pursuit of the
analytic estimates presented here, as well as to other
refinements in the presentation.

Received June 1971 ; revised April 1972

Information P. Baxendale
Retrieval Editor

Some Approaches
to Best-Match
File Searching
W.A. Burkhard
University of California, San Diego
and
R.M. Keller
Princeton University

The problem of searching the set of keys in a file to
find a key which is closest to a given query key is
discussed. After "closest," in terms of a metric on the
the key space, is suitably defined, three file structures
are presented together with their corresponding search
algorithms, which are intended to reduce the number of
comparisons required to achieve the desired result.
These methods are derived using certain inequalities
satisfied by metrics and by graph-theoretic concepts.
Some empirical results are presented which compare
the efficiency of the methods.

Key Words and Phrases: matching, file structuring,
file searching, heuristics, best match

CR Categories: 3.73, 3.79, 4.9

References

1. Hamming, R. Nunwrical Methods Jbr Scientists and Engineers,
McGraw-Hill, New York, 1962.
2. Knuth, D.E. The Art of Computer Programming, Vol. 2,
Addison Wesley, Reading, Mass., 1969.
3. Urabe, M. Roundoff error distribution in fixed-point
multiplication and a remark about the rounding rule. SlAM J.
Num. Anal. 5, 2 (June 1968), 202-210.
4. Wilkinson, J.H. Rounding Errors in Algebraic Processes.
Prentice-Hall, Englewood Cliffs, N.J., 1963.
5. Hull, T.E., and Swenson, J.R. Tests of probabilistic models
for propagation of roundoff errors. Comm. ACM 9, 2 (Feb.
1966), 108-113.
6. Henrici, P. Test of probabilistic models for the propagation
of roundoff errors (letter to the editor), Comm. ACM 9, 6 (June
1966), 409--410.
7. Brent, R.P. On the precision attainable with various
floating-point number systems (to be published).
8. Kaneko, T., and Liu, B. On local roundoff errors in
floating-point arithmetic (to be published in J. ACM).

230

Copyright @ 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This study was conducted while W. A. Burkhard was with
Princeton University. Work reported here was sponsored by the
National Science Foundation through grants GJ465 and GJ30126,
and by Bell Telephone Laboratories, Murray Hill, N.J.

Authors' addresses: W. A. Burkhard, Department of Applied
Physics and Information Science, University of California, San
Diego, La Jolla, CA 92307; R. M. Keller, Department of Electrical
Engineering, Princeton University, Princeton, NJ 08540.

Communications April 1973
of Volume 16
the ACM Number 4

Introduction

Suppose that X is a file, each member of which is
indexed by a key, and that q is a query key possibly not
in the file. The following types of searches through file
X might be necessary:

Class 0 search. Is the query key in the file?
Class 1 search. Determine a key in the file which is

closest to the query key.
Class 2 search. Determine all keys in the file which

are closest to the query key.
The class 0 search is one which is commonly dealt

with in constructing symbol tables and in retrieving
records from files. We mention it mainly for compari-
son purposes. Classes 1 and 2 appear to be less common.
A few applications immediately suggest themselves, and
we suspect that others will appear with increasing use
of the computer as an information retrieval tool. One
use concerns keys which are possible outcomes of tests
in large switching networks, such as the Bell System
No. 1 •ss [3]. Another is the classification of chemical
compounds, such as in Chemical Abstracts [2]. The
common feature of these problems is that it is desirable
to retrieve information, the key of which is closely re-
lated to, but not necessarily identical to, a query key.
The problem has been discussed in [3], but no solutions
proposed. There are, of course, rather obvious tech-
niques for handling all of these classes. It is sufficient to
search through the file from one end to the other, ex-
amining all keys. In many instances, the file to be
searched is extremely large, and the exhaustive search
technique above requires an exorbitant amount of time.
Moreover, when the file is extremely large, it will not be
possible to store it entirely in the main memory of a
computer. In this case an auxiliary memory must be
used, and the longer time required to transfer keys from
auxiliary to main memory lengthens the required search
time. Thus we are interested in techniques which do not
require that every key of the file be examined. When the
file is stored in auxiliary memory, a few extra calcula-
tions done in the main memory may make it unneces-
sary to transfer a substantial number of segments of the
file between memories. For emphasis we list:

Desideratum. We seek for search algorithms which
do not examine every key of the file during the search
process.

With this desideratum in mind, we will consider
some representations of the file suitable for storage in
computer memory and the corresponding search tech-
niques for handling classes 0, 1, and 2. We denote as
preprocessing the general endeavor of structuring the
file, as well as initially storing it in memory. The actual
search process will be referred to as searching.

Review of Conventional Techniques

We begin by introducing some notation which will
be useful in our discussions. Let X = {xl, x ~ , . . . , xn }

be the set of keys in the file to be searched. Let X' be
the space of all possible values which a key could
assume.

Let us look at the record for file structuring strate-
gies and search algorithms for class 0, namely, to deter-
mine whether a given query key q is in the file.

Exhaustive Search
Preprocessing. Store X in memory as a linear list.
Searching. Sequentially compare q with every key in

the list.
When the file X is stored in this manner, any order-

ing of X is as likely as another. If q is not in the file,
then all of the keys in the file must be examined to
ascertain this. If q is in X, then on the average only
(n q- 1)/2 comparisons must be made to locate q.
The maximum number of comparisons possible here
is n.

Binary Search
Preprocessing. Order X into an ascending sequence

and store it sequentially in memory.
Searching. Eliminate one half of the remaining file

after comparing the query key with the key in the middle
position.

Of course, to use this technique, it is necessary that
an ordering exist for keys in X. The maximum number
of comparisons required for class 0 is Flog2(n q- 1) 7 ,
where I-x-1 denotes the least integer greater than or
equal to x.

Direct Lookup
Preprocessing. Associate each key of X' with a

distinct location in auxiliary memory. Each location
contains a flag which is set to "yes" or " n o " depending
on whether or not the associated key is in X.

Searching. Determine the value of the flag associated
with key q by direct access.

This technique is the fastest (when it can be used)
since only one examination of an item in memory
suffices. If the set of keys is significantly smaller than
the set of addresses spanned by them on a direct-access
device, much space will be wasted. One means of avoid-
ing this problem is to use "scatter storage" techniques
[4]. In certain cases, the time-efficiency of direct access
6an be approached while wasted space can be reduced,
if these techniques are used.

There are nontrivial cases in which class 1 or 2
searches cannot be handled by these methods. Before
expounding on this, let us state specifically what we
mean by "closest" in these situations, and then point
out the difficulty. The "distance" between two keys,
x and y, is given by the value of a metric, d(x, y).
Specifically, a metric is any function d: X r × X' --~ non-
negative integers (we say integers for simplicity) such
that

(1) for every x, y in X' ,d(x , y) = 0 ¢=~ x = y,

231 Communications April 1973
of Volume 16
the ACM Number 4

(2) for every x, y in X', d(x, y) = d(y, x),
(3) for every x, y, z in X', d(x, z) <_ d(x, y) -b d(y, z).

The third condition is usually referred to as the triangle
inequality. Since X is finite, we may assume d takes on
values from the set {0, 1, 2 , . . . , m} for some m.

A common example of a metric occurs when the
keys are binary numbers. In this case the "Hamming
distance" between two keys, defined to be the number
of bit positions in which the keys differ, is easily shown
to be a metric. I f the bits of a key represent those
"at t r ibutes" which a member of a file possesses, then
a class 1 search corresponds to finding a member of
the file which most closely matches a given list of at-
tributes, while a class 2 search corresponds to finding
all such members. Minsky and Papert [3] refer to this
as the "bes t match" problem and comment on its
difficulty.

Observation
The reason that conventional techniques for han-

dling class 0 do not generally suffice for the other classes
is that the linear order of keys is not significant. Because
many distinct keys may be at a given distance from a
query, the key space may assume aspects of a multidi-
mensional space in either class 1 or class 2. Conventional
techniques generally are only capable of exploiting a
one-dimensional key space.

There are some metrics which are trivial exceptions.
One is the metric

d(x ,y) ~ 1, x ~ y
-- 0, otherwise.

Another is the case in which the keys are integer valued
and d(x, y) = Ix - y I. The first case degenerates to
class 0, while binary search may be applied in the
second. In the more general case, the only "obvious"
way appears to revert to exhaustive search, which
fails to meet our desideratum, since in general the
entire file must be searched.

The file structures presented here may be viewed
as what are generally called "clustering techniques."
Clustering techniques have also been used in conjunc-
tion with " t e rm classification." A goal of term classi-
fication is to identify groups of attributes of the keys
for which most records in the file assign similar values.
The resulting set of groups of attributes may be used
to redefine the key space. Such approaches are dis-
cussed in [5, 6, 7]. They are, in a sense, orthogonal to
the approach presented here, which assumes that the
key space is fixed and given a priori. Our attention is
directed at identifying groups of records whose keys
possess certain distance relationships.

Search Techniques for Classes 1 and 2

Suppose that during the application of a search
algorithm, b is the "bes t " key found thus far. That is,

for every x E

Then we may

for every x E
for every x E

In this case,
for (1):

k -- d(q, x °)

b is the key which is known to minimize d(q, x) over
all keys previously considered. Let ~ = d(q, b). We
update b with key x by the following procedure:

Update (b, x). If d(q,x) < ~, then replace b with x,
and ~ with d(q, x); otherwise do nothing.

Every update necessitates a comparison. To meet our
desideratum, we next give some conditions which imply
that an update is not necessary. The discussion will be
limited to class 1 for the time being; extension to class 2
will follow. We need not update with a key x in X if
it is known a priori that

d(q, x) >_ ~. (1)

The cutoff criteria presented next are designed to supply
sufficient conditions for inequality (1) to be satisfied.

Let x ° be an element of X, and suppose that Y
is a subset of X with the property that for some k =
k(Y, x°), we have

for every x E Y, d(x, x °) < k. (2)

Let us derive a sufficient condit ion for (1), given (2).
F rom the triangle inequality,

for every x E Y, d(q, x) >_ d(q, x °) - d(x, x°). (3)

From (2) and (3) we have

for e v e r y x E Y, d(q ,x) >_ d (q , x °) -- k. (4)

Hence the following is a sufficient condition for (1):

d(q, x °) -- k >_ ~. (5)

We call this the first cutoff criterion, since if the condi-
tion is satisfied, the entire subset Y may be eliminated
from consideration, i.e. " cu t off." Note that the appli-
cation of this criterion depends on ~, and is more likely
to provide a cutoff if ~ is small.

Suppose that instead of (2), there is a k = k(Y, x °)
such that

Y, d(x, x °) >_ k. (2')

proceed analogously to obtain

Y, d(q, x) >_ d(x, x °) - d(q, x°), (3')
Y, d(q, x) >__ k - d(q, x°). (4')

the following is a sufficient condition

We call this the second cutoff criterion. Again this is
more likely to bear fruit if ~ is small. We may combine
both of these criteria if Y satisfies

for e v e r y x E Y, d(x ° , x) = k. (6)

In this case, a sufficient condition for Y to be elimi-
nated is

l k - - d (q , x°)[>_ ~. (7)

We call this the joint cutoff criterion.
We next give a method which makes use of the

joint criterion.

232 Communications April 1973
of Volume 16
the ACM Number 4

File Structure 1. Pick an arbitrary element x ° of X.
Then divide X -- {x ° } into subsets X °, X ~, X 2, . . . , X 'n
where for all k = 0, 1 , . . . , m and all x C X k, d(x, x °) =
k. Each of these subsets is then stored so that one may
be distinguished from another. Clearly, by the way in
which the subsets are constructed, the joint cutoff
criterion can be applied to each. The search algorithm
for this structure is given below.

Search Algorithm 1. Using file structure 1, to find
the best match for query q:

Step 1.
Let b = x °, ~ = d(q, x°), and j = d(q, x°).

Step 2.
D o S t e p 3 f o r k = j , j + 1,j - 1 , j + 2 , j - - 2, . . .

Step 3.
(Apply joint cutoff.) If [k - j [< 4, do Step 4.

Step 4.
Search X k by some algorithm, possibly updating b,

in the process.
Step 5.

Stop. The best match is b.

For reasons to be explained presently, Step 4 is pur-
posely left vague. To make it concrete, let us say that
the search of X k is done by exhaustive comparison.

While the order of varying k above is not necessary,
it does seem to be the most natural, since once the test
in Step 3 gives a negative answer because k - j >__ ~ and
a negative answer because j - k >__ ~, the search may
be terminated; for it is then known that no other
value of k can give a positive answer.

Note that the element x ° was chosen arbitrarily.
We may make use of this fact to structure each set
X k by picking an element x k,° from X k, then forming
sets X k,°, X k,t, Xk .~ , . . . , such that d(x k,r, x) = r for
all x in X ~,~. We are then equipped to reapply Algo-
rithm 1 recursively to X e in Step 4, instead of simply
using exhaustive search. In fact this recursion may
be done to any depth desired.

We next present a different technique in which X is
again partioned into X 1, X 2 , . . . , in which we allow an
initial comparison with one representative of each
X ~ to provide cutoff information.

File Structure 2. Divide X into a number of sets
X 1,X ~,X 3 , X" such that for each i = 1 ,2 , s
there is a key x ~ and a number k ~ such that for each
x C X i, d (x ~, x) _< k ~. For simplicity, we will assume
here that k = k ~ for all i.

Search Algorithm 2. Using File Structure 2, to find
the best match for query q:

Step 1.
Let b be an arbitrary element of X; let ~ = d(b, q).

Step 2.
Compute hi = d(x ~, q), and Update (b, x ~) for
i = 1 , 2 , . . . , s .

Step 3.
For i varying over 1, 2 , . . . , s in order of increas-
ing h~, do Step 4.

Step 4.
(Apply first cutoff criterion.) If hl - k < ~, then
search X ~, possibly updating b, ~.

Step 5.
Stop. The best match is b.

As in Algorithm 1, the order of searching the X ~ is not
important. However in the particular ordering given,
once the test in Step 4 gives a negative answer, the
search may be stopped. This algorithm may also be
applied recursively, provided that k is decreased as the
level increases.

We now mention a refinement of Algorithm 2
which applies when additional structure is added to
the file. Suppose that Y is a subset of X such that for
some k

x, x' C Y implies d(x, x') <_ k. (8)

(If we consider the file as an undirected graph with
keys as nodes, such that two nodes x, x' are connected
only when d(x, x') <_ k, then such a set Y is commonly
called complete. A complete set which is maximal, in
the sense that no additional nodes can be added while
retaining the complete property, is referred to as a
clique of the graph. Equivalently, a set Y is a clique if
the converse of (8) also holds. Any subsequent refer-
ences to these terms will pertain to this correspondence.)

If x ° is any element of Y, we may, by the first cutoff
criterion, eliminate Y - {x ° } if

d (q , x °) - k >_ ~. (9)

Suppose that we are searching within a set Y satisfying
(8). Inequality (9) suggests that as well as updating
with each key the value ~ as in previous algorithms,
we also record the maximum value ~ of d(q, x) - k as
we search. Then if at some time ~ _> ~ is satisfied (re-
calling that ~ generally decreases as the algorithm pro-
ceeds), we may immediately cease the search of Y,
knowing that no further improvement is possible. We
call this the clique criterion. Note that it may be applied
in Algorithm 2 when the X ~ have the clique property.
We emphasize the distinction that this criterion is
applied within the search of X ~, whereas the first cutoff
criterion is applied before the search of X ~. We now
elaborate on the methods which employ the clique
criterion. The reader may observe that the methods also
work when "cl ique" is replaced by "complete set."
That is, the sets need not be maximal.

File Structure 3. Find a set C = {X ~, X 2 , . . . } of
cliques such that every key in X is in at least one ele-
ment of C. An arbitrary element x ~ of X ~ will be desig-
nated clique representative. The file is stored so that
cliques in C are distinguishable from each other. It is
noted that the keys of particular records may appear
in several cliques. Search Algorithm 2 may be employed
using this file structure; the clique criterion may be
utilized within each clique.

It is noted that as the number of cliques in C de-

233 Communications April 1973
of Volume 16
the ACM Number 4

creases, the total memory for pointers, etc., required by
this structuring of X decreases. Moreover, it is possible
to strengthen the notion of a clique representative thus
decreasing the average number of updates required in
searching. The idea is to select as representatives those
keys which are in the greatest number of cliques. The
following algorithm determines such a set of clique
representatives.

Step 1.
Determine how many elements of C each key of X
is in.

Step 2.
Do Step 3 for i -- 1, 2, . . . until all elements of C
have been considered.

Step 3.
Select any key x ~ in X~-as representative for clique
X ~ provided x ~ is in no fewer elements of C than
any other key in X ~.

Step 4.
Stop. The set of representatives is {x 1, x 2, . . . }.

To utilize this notion of clique representative, the file X
is stored as blocks {B1, B 2 , . . . }. Each block Bj con-
tains all cliques in C with the same clique representa-
tive xL With common clique representatives, the first
cutoff criterion can often eliminate several cliques at a
time in the search process with only one comparison.
The following algorithm utilizes File Structure 3 with
the generalized notion of clique representatives.

Search Algorithm 3. Using File Structure 3, this
algorithm finds a best match b in X for query key q.

Step 1.
Let b be an arbitrary element in X; let ~ = d(q, b).

Step 2.
Do Step 3 f o r j = l, 2, . . . u n t i l all blocks of X
have been considered.

Step 3.
Update (b, xi); (apply first cutoff criterion) if
d(q, x j) - k < ~, then do Step 4.

Step 4.
Do Step 5 for each clique c in block Bj .

Step 5.
Set ~ = 0. Do Step 6 for each x in c while ~ <
(the clique cutoff criterion).

Step 6.
Update (b, x). Set 6 = max (6, d(q, x) - k).

Step 7.
Stop. The best match is b.

All of our simulations involving clique structuring use
the generalized notion of clique representative.

Preprocessing Phase

As mentioned before, all file structuring is done ini-
tially in a preprocessing phase. We discuss briefly the
amount of work required in this phase for two of the
file structures presented.

File Structure 1. First choose as arbitrary element
x °. The sets X 1, X ~, . . . a r e then created by what
amounts to a sort on the value of d(x °, x) where x
represents a typical key. The sets X 1, X 2 , . . . may be
delineated either by storing a special set of pointers
for the beginning location of each set, or by storing the
set of indices with the sets themselves and performing a
sequential search for the proper group during the search
algorithm.

If multiple-level structuring is desired, then this
process is simply repeated on the individual sets to
form subsets, and so on. The overall structure may be
envisioned as a tree as shown in Figure 1.

Fig. 1. File Structure 1 viewed as a tree.

0 . o ~ \ m.o

xO,O xO,!,.xO, m X 1,0 XI.}..XI, m xm,Oxm,l.., xm, m

x -
J

X

File Structure 2. (Since File Structure 3 is a more
structured form of File Structure 2, we omit considera-
tion of the latter here.)

File Structure 3. The file is stored in terms of cliques.
The blocks may be stored sequentially and processed
one after the other, in which case the active work
space (memory needed to perform the required compu-
tations) by the search may be fixed and independent
of the size of the file.

In light of previous comments, the set C is deter-
mined with as few cliques as possible. A minimal cover
for Xis a set C of cliques such that: (1) every key in X
is in at least one element of C; and (2) for no smaller
set C' does property 1 hold. In terms of economy of
space, we would like to determine a minimal cover for
X. A minimal cover for X may be computed by first
determining the set C of all cliques of the graph (of
the file) and then extracting a minimal set cover. An
algorithm known as the Bierstone algorithm for com-
puting the set of all cliques of an undirected graph is
given in [8, 9].

The following algorithm yields an approximate
minimal cover. Let C be the set of cliques determined
by the Bierstone algorithm. Let M be empty and all
keys be untagged.

Step 1.
Do Step 2 while some key is untagged.

Step 2.
Determine a clique c in C such that c contains no
fewer untagged keys than any other clique of C.
Place this clique in set M and tag all keys of c.

234 Communications April 1973
of Volume 16
the ACM Number 4

Step 3.
Stop. The set M contains an approximate minimal
cover.

We use the adjective "approximate" here since the
algorithm described above does not in general yield a
minimal cover; this approximation is used in all of our
simulations since the computation of the minimal cover
is an extremely time-consuming process.

File Maintenance

So far the discussion has centered on fast search
algorithms for the given file structures. Another problem
may occur if records must be added or deleted after the
initial structuring has occurred. Of course the file could
be restructured ab initio, but this is useful only if addi-
tions and deletions occur infrequently. We wish to make
a few remarks here concerning the manner in which
existing files may be modified without repeating the
initial structuring.

In the case of File Structures 1 and 2, the addition
of a new key simply involves locating the correspond-
ing set X k and adding the key to this set. If multiple
levels of structuring are used then this process is
iterated for each level. If there is no corresponding
set X k then one must be created with the new key as its
only element. Of course, once the set X k is found, the
insertion may or may not be trivial, depending on the
details of implementation. The point is that the im-
posed structuring does not cause the insertion process
to be appreciably more complicated than it would be
for, say, an indexed-sequential-access file.

The deletion of a key in Structures 1 and 2 follows
a process similar to that above, with special considera-
tion for the case in which the key to be deleted is the
representative x °. In this case, the key cannot simply be
deleted, as it is essential for the structure information.
Instead an extra bit must be used for each key which
denotes whether the key actually corresponds to a record
or not. The search algorithm is modified correspond-
ingly to ignore keys which do not correspond to records.
This involves testing the extra bit in the Update pro-
cedure.

File Structure 3 may be maintained in the manner
described below. In the discussion, we assume that a
covering set of cliques is used as previously described.
The extensions to other versions will be evident.

Notice that the addition of a new key to the file
cannot decrease the number of cliques needed in a
minimal cover of the file. However, adding a new key
may necessitate increasing the number of cliques in a
minimal cover. Consider adding a key ~ to the file.
We may use the existing file structure to locate a key
closest to ~. If this key is no closer than k -t- 1, then
2 is added to the file structure as a clique containing
only itself. The set of clique representatives is then
enlarged to include .t. If the key closest to ~ is closer

than k -t- I, a complete set may be determined con-
sisting only of keys contained in the clique containing ~¢.
This set may be inserted into the cover. The set deter-
mined in this manner may not be a clique; however,
as remarked earlier, as long as the newly created set is
complete, the search algorithm will suffice.

Obviously, deleting a key 2 from the file can never
increase the number of cliques in a cover of the file.
We may use repeated applications of the existing search
technique to delete copies of ~ in the file. If R is a
clique representative, it can be retained as structure
information and simply be tagged as not being in the
file, as in the case of the other file structures.

For either insertion or deletion, it may be expedient,
in terms of subsequent performance of the search algo-
rithm, to redefine the set of clique representatives. Of
course, this redefinition may necessitate reorganizing
the block structure of the existing file implementation.

While the three file structures were conceived with
time-invariant files in mind, it is seen that they are use-
ful even in an environment necessitating changing file
membership. The retrieval performance of perturbed
files maintained by these techniques has not been stud-
ied; however, it seems plausible that for small pertur-
bations the performance will not be degraded signifi-
cantly.

Experimental Results

The techniques presented here were tried experi-
mental ly--a total of 1000 keys of 30 bits, each of which
was obtained using a linear shift register generator [10].
The characteristic polynomial of the generator is 1 -I-
X a q- X 31. The Hamming distance was used as a metric,
and a number of class 1 experiments were run, each
using 80 trial queries, none of which exactly matched any
key in the file.

Tables I and II compare File Structures and Algo-
rithms 1 and 3 respectively. It should be emphasized
that the numerical quantities presented are sensitive
to arbitrary choices made in the preprocessing phase.
Another set of experiments was run in which the keys
were divided in half to produce a file of 2000 keys of
15 bits each. The results in this case were substantially
better and are given in Table III. We also show in
Table III a comparison between class 1 and class 2
searches.

We believe that the difference in the results between
the two key sizes is due to the relative values of the
size of the file and the number of possible values in the
key space. For an n-bit key, there are 2 ~ such values.
The trees with 30-bit keys were run with 200 or 500
elements in the file, whereas those with 15-bit keys
were run with 2000 elements in the file. Thus, in the
latter case, the probability of a closer match is higher,
and the probability of achieving a cutoff is correspond-
ingly greater.

235 Communications April 1973
of Volume 16
the ACM Number 4

Table I. Results for File Structure 1, with three levels of
structuring, and Search Algorithm 1 on 30-bit keys (80 trials
were used on each file).

File
Compo- Num-
sition ber of
Key Keys
Numbers

401-600 200
601-800 200
801-1000 200
500-1000 500

Number of Final/~
Comparisons/Query Value

Mean Stand-
ardDe- Max. Min.
viation

(%) (%) (%) (%)

Max. Min.

76.9 19.6 100 1.0 9 5
76.8 28.1 I00 1.0 10 5
75.7 25.3 100 1.0 9 4
69.4 21.9 99.2 0.4 9 4

Table II. Results for File Structure 3 and Search Algorithm 3
on 30-bit keys (80 trials were used on each file).

File
Composition
Key Numbers

401-600
601-800
801-1000
501-1000

Number of Comparisons/Query
Mean Standard Max. Min.

deviation
(%) (%) (%) (%)

82 9 97 50
82 10 99 51
78 11 99 33
67 11 87 39

Table III. Results for File Structure 1, with 3 levels of struc-
turing, and Search Algorithm 1 on 2000 keys of 15 bits each
(80 trials were used in each case). Final ~ values varied be-
tween 0 and 2.

Class 1 Search
Class 2 Search

Number of Comparisons/Query

Mean Max. Min.
(%) (%) (%)

13.4 39.2 0.1
26.7 61.5 0.1

all cliques of an undirected graph using the Bierstone
algorithm is an extremely lengthy process. Another
clique finding algorithm is now known which will
shorten the process, and the empirical study of File
Structure 3 can be completed in a more thorough man-
ner [11].

Summary

The study described here is concerned with the gen-
eral problem of efficiently searching files in the following
situations: (1) find a key in the file closest to a given
query key, and (2) find all keys in the file closest to a
given query key. By "closest" we mean according to
some suitable measure of distance, specifically a "met-
ric" in the mathematical sense. These situations may
arise in information retrieval applications in which
members of a file are keyed to a number of numerically-
represented attributes. Our search algorithms have the
following common basis: let b be the "best" key found
at a certain point in the application of the algorithm.
Based on certain "cutoff criteria" which depend on b,
subsets of the file remaining to be examined are elimi-
nated without explicitly comparing the keys in these
subsets with the query key. Our experimental results
(on randomly-generated flies) indicate that large seg-
ments of the file may be eliminated from consideration
using these cutoff criteria.

Acknowledgment . The authors wish to thank Dennis
Leung for assistance in programming some of the algo-
rithms presented here.

Received March 1972; revised June 1972

References

Condusions

Our initial goal - - to determine some heuristics suita-
ble for file structuring in particular situations--has been
met, and our results are contained here. The empirical
results suggest that these heuristics do offer techniques
which allow fast file searches. A question naturally
arises--how good are these techniques? A detailed anal-
ysis of the techniques could shed some light on ques-
tions such as: (1) How much of an average file can be
eliminated using cutoff criteria (of some type)? (2) Is it
possible to take into account additional knowledge of
the contents of the file and thereby "do better" than in
the average case? and (3) Are there other clustering
techniques which do as well as or better than the two
mentioned here? The list of unanswered questions can
be continued.

File Structure 3 was not empirically investigated as
thoroughly as File Structure 1 since the computation of

I. Chang, H.Y., and Thomas, W. Methods of interpreting
diagnostic data for locating faults in digital machines. Bell Syst.
Tech. J. (1967), 289-317.
2. Wipke, W.T. Private communication. Dep. of Chem., Princeton
U., Princeton, N.J.
3. Minsky, M., and Papert, S. Perceptrons: An Introduction to
Computational Geometry M.I.T. Press, Cambridge, Mass., 1969.
4. Morris, R. Scatter storage techniques. Comm. ACM, 11,
(1 Jan. 1968), 38-44.
5. Jackson, D.M. Classification, relevance, and information
retrieval. Advances in Computers Vol. 11, Academic Press, N.Y.,
1971.
6. Litofsky, B., and Prywes, N.S. All-automatic processing for a
large library. Proc. AFIPS 1970 SJCC, Vol. 36, AFIPS Press,
Montvale, N.J., pp. 323-331.
7. Salton, G. Experiments in automatic thesaurus construction for
information retrieval. Proc. IFIP Congress 1971, North Holland
Pub. Co., Amsterdam.
8. Augustson, J.G., and Minker, J. An analysis of some graph
theoretical cluster techniques. J. ACM 17, 4 (Oct. 1970), 571-588.
9. Mulligan, C.D., and Corneil, D.G. Corrections to Bierstone's
algorithm for generating cliques. J. ACM 19, 2 (Apr. 1972),
244-247.
10. Golomb, S.W. Shift Register Sequences. Holden-Day, Inc.,
San Francisco, 1967.
11. Bron, C., and Kerbosh, J.A.G.M. Finding all cliques of an
undirected graph. (To be published.)

236 Communications April 1973
of Volume 16
the ACM Number 4

