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Abstract

In  many database applications, one of the common queries is to
find approximate matches to a given query item from a
collection of data items. For example, given an image database,
one may want to retrieve all images that are similar to a given
query image. Distance based index structures are proposed for
applications where the data domain is high dimensional, or the
distance function used to compute distances between data
objects is non-Euclidean. In this paper, we introduce a distance
based index structure called multi-vantage point (mvp) tree for
similarity queries on high-dimensional metric spaces. The mvp-
tree uses more than one vantage point to partition the space into
spherical cuts at each level. It also utilizes the pre-computed (at
construction time) distances between the data points and the
vantage points. We have done experiments to compare mvp-trees
with vp-trees which have a similar partitioning strategy, but use
only one vantage point at  each  level, and do not make use of
the pre-computed distances. Empirical studies show that mvp-
tree outperforms the vp-tree 20% to 80% for varying query
ranges and different distance distributions.

1. Introduction

In many database applications, it is desirable to be able
to answer queries based on proximity such as asking for data
items that are similar to a query item, or that are closest to a
query item. We face such queries in the context of many database
applications such as genetics, image/picture databases, time
series analysis, information retrieval, etc. In genetics, the concern
is to find DNA or protein sequences that are similar in a genetic
database. In time-series analysis, we would like to find similar
patterns among a given collection of sequences. Image databases
can be queried to find and retrieve images in the database that
are similar to the query image with respect to a specified criteria.

Similarity between images can be measured in a number
of ways. Features such as shape, color, texture can be extracted
from images in the database to be used as content information
where the distance calculations will be based on. Images can also
be compared on a pixel by pixel basis by calculating the distance
between two images as the accumulation of the differences
between the intensities of their pixels.

In all the applications above, the problem is to find
similar data items to a given query item where the similarity
between items is computed by some distance function defined on
the application domain. Our objective is to provide an efficient
access mechanism to answer these similarity queries. In this
paper, we consider the applications where the data domain is
high dimensional, and the distance function employed is metric.
It is important for an application to have a metric distance
function to make it possible to do filtering of distant data items
for a similarity query by using the triangle inequality property
(section 2). Because of the high dimensionality, the distance
calculations between data items are assumed to be very
expensive. Therefore, an efficient access mechanism should
certainly have to minimize the number of distance calculations
for similarity queries to improve the speed in answering them.
This is usually done by employing techniques and index
structures that are used to filter out distant (non-similar) data
items quickly, avoiding expensive distance computations for each
of them.

The data items that are in the result of a similarity query
can be further filtered out by the user through visual browsing.
This happens in image database applications where the user
would pick the most semantically related images to a query
image by examining the images retrieved as the result of a
similarity query. This is mostly inevitable because it is
impossible to extract and represent all the semantic information
for an image simply by extracting features in the image. The best
an image database can do is to present the images that are related
or close to the query image, and leave the further identification
and semantic interpretation of images to users.

In this paper, we introduce the mvp-tree (multi-vantage
point tree) as a general solution to the problem of answering
similarity based queries efficiently for high-dimensional metric
spaces. The mvp-tree is similar to the vp-tree (vantage point tree)
[Uhl91] in the sense that both structures use relative distances
from a vantage point to partition the domain space. In vp-trees, at
every node of the tree, a vantage point is chosen among the data
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points, and the distances of this vantage point from all other
points (the points that will be indexed below that node)  are
computed. Then, these points are sorted into an ordered list with
respect to their distances from the vantage point. Next, the list is
partitioned at positions to create sublists of equal cardinality.
The order of the tree corresponds to the number of partitions to
be made. Each of these partitions keep the data points that fall
into a spherical cut with inner and outer radii being the minimum
and the maximum distances of these points from the vantage
point.

The mvp-tree behaves more cleverly in making use of the
vantage-points by employing more than one at each level of the
tree to increase the fanout of each node of the tree. In vp-trees,
for a given similarity query, most of the distance computations
made are between the query point and the vantage points.
Because of using more than one vantage points in a node, the
mvp-tree has less vantage points compared to a vp-tree. The
distances of  data points at the leaf nodes from the vantage points
at higher levels (which were already computed at construction
time) are kept in mvp-trees, and these distances are used for
efficient filtering at search time. The efficient filtering at the leaf
level is utilized more by making the leaf nodes to have higher
node capacities. By this way, the major filtering step during
search is delayed to the leaf level.

We have done experiments with 20-dimensional
Euclidean vectors and gray-level images to compare vp-trees and
mvp-trees to demonstrate mvp-trees’ efficiency. The distance
distribution of data points plays an important role in the
efficiency of the index structures, so we experimented on two
sets of Euclidean vectors with different distance distributions. In
both cases, mvp-trees made 20% to 80% less number of distance
computations compared to vp-trees for small query ranges. For
higher query ranges, the percentagewise difference decreased
gradually, yet the mvp-trees performed 10% to a respectable 30%
less distance computations for the largest query ranges we used
in our experiments.

Our experiments on gray-level images using L1 and L2

metrics (see section 5.1) also revealed the fact that mvp-trees
perform better than vp-trees. For this data set, we had only 1151
images to experiment on (and therefore had rather shallow trees),
and the mvp-trees performed upto 20-30% less distance
computations.

The rest of the paper is organized as follows. Section 2
gives the definitions for high dimensional metric spaces and
similarity queries. Section 3 presents the problem of indexing in
high dimensional spaces and also presents previous approaches
to this problem. The related work for distance-based index
structures to answer similarity based queries is also given in
section 3. Section 4 introduces the mvp-tree structure.  The
experimental results for comparing the mvp-trees with vp-trees
are given in section 5. We summarize our results and point out
future research directions in section 6.

2. Metric Spaces and Similarity Queries

In this section, we briefly give the definitions for metric
distance functions and different types of similarity queries.

A metric distance function d(x,y) for a metric space is
defined as follows:

i) d(x,y) = d(y,x)
ii) 0 < d(x,y) < ∞,  x≠ y
iii) d(x,x) = 0
iv) d(x,y) ≤  d(x,z) + d(z,y)      (triangle inequality)

The above conditions are the only ones we should be
assuming when designing an index structure based on distances
between objects in a metric space. Note that, we cannot make use
of any geometric information about the metric space, unlike the
way we can for a Euclidean space. We only have a set of objects
from a metric space, and a distance function d() that can be used
to compute the distance between any two objects.

Similarity based queries can be posed in a number of
ways. The most common one asks for all data objects that are
within some specified distance from a given query object. These
queries require retrieval of near neighbors of the query object:

Near Neighbor Query: From a given set of data objects X
= {X1, X2, ..., Xn} from a metric space with a metric distance
function d(), retrieve all data objects that are within distance  r of
a given query point Y. The resulting set will be { Xi | Xi ∈ X and
d(Xi,Y)≤ r }. Here, r is generally referred to as the similarity
measure, or the tolerance factor.

Some variations of the near neighbor query are also
possible. The nearest neighbor query asks for the closest object
to a given query object. Similarly, k closest objects may be
requested as well. Though not very common,  objects that are
farther than a given range from a query object can also be asked
as well as the farthest, or the k farthest objects from the query
object. The formulation of all these queries are similar to the
near neighbor query we have given above. 

Here, we are mainly concerned on distance based
indexing for high-dimensional metric spaces. We also
concentrate on the near neighbor queries when we introduce our
index structure. Our main objective is to minimize the number of
distance calculations for a given similarity query as we assume
that distance computations in high-dimensional metric spaces are
very expensive. In the next section, we discuss the indexing
problem for high-dimensional metric spaces, and review previous
approaches to the problem.

3. Indexing in High-Dimensional Spaces

For low-dimensional Euclidean domains, the
conventional index structures ([Sam89]) such as R-trees (and its
variations) [Gut84, SRF87, BKSS90] can be used effectively to
answer similarity queries. In such cases, a near neighbor search
query would ask for all the objects in (or that intersects) a
spherical search window where the center is the query object and
the radius is the tolerance factor r. There are some special
techniques for other forms of similarity queries, such as nearest
neighbor queries. For example, in [RKV95], some heuristics are
introduced to efficiently search the R-tree structure to answer
nearest neighbor queries. However, the conventional spatial
structures stop being efficient if the dimensionality is high.
Experimental results [Ott92] show that R-trees become
inefficient for n-dimensional spaces where n is greater than 20.



The problem of indexing high-dimensional spaces can be
approached in different ways.  One approach is to use distance
preserving transformations to Euclidean spaces, which we
discuss in section 3.1. Another approach is using distance-based
index structures. In section 3.2, we discuss distance-based index
structures, and briefly review the previous work. In section 3.3,
we discuss the vp-tree structure in detail since it is the most
relevant approach to work.

3.1 Distance Preserving Transformations

There are ways to use conventional spatial structures for
high-dimensional domains. One way is to apply a mapping of
objects from a high-dimensional space to a low-dimensional
(Euclidean) space by using a distance preserving transformation,
and then using conventional index structures (such as R-trees) as
a major filtering mechanism. A distance preserving
transformation is a mapping from a high-dimensional domain  to
a lower-dimensional domain  where the distances between
objects before the transformation (in the actual space) are greater
than or equal to the distances after the transformation (in the
transformed space). That is, the distance preserving functions
underestimate the actual distances between objects in the
transformed space. Distance preserving transformations have
been successfully used to index high-dimensional data in many
applications  such as time sequences [AFA93, FRM94], and
images [FEF+94].

The distance preserving functions such as DFT,
Karhunen-Loeve are applicable to any Euclidean domain. Yet, it
is also possible to come up with application specific distance
preserving transformations for the same purpose. In the QBIC
(Query By Image Content) system [FEF+94], color content of
images can be used to answer similarity queries. The difference
of the color contents of two images are computed from their color
histograms. Computation of a distance between the color
histograms of two images is quite expensive as the color
histograms are high-dimensional (number of different colors is
generally 64 or 256) vectors, and also crosstalk (as some colors
are similar) between colors have to be considered. To increase
speed in color distance computation, the QBIC keeps an index on
average color of images. The average color of an image is a 3-
dimensional vector with the average red, blue, and green  values
of the pixels in the image. The distance between average color
vectors of images are proven to be less than or equal to the
distance between their color histograms, that is, the
transformation is distance preserving. Similarity queries on color
content of images are answered by first using the index on
average color vectors as the major filtering step, and then
refining the result by actual computations of histogram distances.

Note that, although the idea of using distance preserving
transformation works fine for many applications, it makes the
assumption that such a transformation exists and applicable to
the application domain. Transformations such as DFT or
Karhunen-Loeve are not effective in indexing high-dimensional
vectors where the values at each dimension are uncorrelated for
any given vector. Therefore, unfortunately, it is not always
possible or cost effective to employ this method. Yet, there are
distance based indexing techniques that are applicable to all
domains where metric distance functions are employed. These
techniques can be directly employed for high-dimensional spatial

domains as the conventional distance functions (such as
Euclidean, or any Lp distance) used for these domains are metric.
Sequence matching, time-series analysis, image databases are
some example applications having such domains. Distance based
techniques are also applicable for domains where the data is non-
spatial (that is, data objects can not be mapped to points in a
multi-dimensional space), such as in the case of text databases
which generally use the edit distance (which is metric) for
computing similarity data items (lines of text, words, etc.).  We
review a few of the distance based indexing techniques below.

3.2 Distance-Based Index Structures

There are a number of research results on efficiently
answering similarity search queries in different contexts. In
[BK73], Burkhard & Keller suggested the use of three different
techniques for the problem of finding best matching (closest) key
words in a file to a given query key. They employ a metric
distance function on the key space which always returns discrete
values, (i.e., the distances are always integers). Their first
method is a hierarchical multi-way tree decomposition. At the
top level, they pick an arbitrary element from the key domain,
and group the rest of the keys with respect to their distances to
that key. The keys that are of the same distance from that key get
into the same group. Note that this is possible since the distance
values are always discrete. The same hierarchical composition
goes on for all the groups recursively, creating a tree structure.

In the second approach in [BK73], they partition the
space into a number of  sets of keys. For each set, they arbitrarily
pick a center key, and calculate the radius which is the
maximum distance between the center and any other key in the
set. The keys in a set are partitioned into other sets recursively
creating a multi-way tree. Each node in the tree, keeps the
centers and the radii for the sets of keys indexed below. The
strategy for partitioning the keys into sets was not discussed and
was left as a parameter.

The third approach of [BK73] is similar to the second
one, but there is the requirement that the diameter (the maximum
distance between any two points in a group) of any group should
be less than a given constant k, where the value of k is different
at each level. The group satisfying this criterion is called a
clique. This method relies on finding the set of maximal cliques
at each level, and keeping their representatives in the nodes to
direct or trim the search. Note that keys may appear in more than
one clique, so the aim is to select the representative keys to be
the ones that appear in as many cliques as possible.

In another approach, such as the one in [SW90], pre-
computed distances between the data elements are used to
efficiently answer similarity search queries. The aim is to
minimize the number of distance computations as much as
possible, as they are assumed to be very expensive. Search
algorithms of O(n) or even O(n log n) (where n is the number of
data objects) are acceptable if they minimize the number distance
computations. In [SW90], a table of size  O(n2) keeps the
distances between data objects if they are pre-computed. The
other pairwise distances are estimated (by specifying an interval)
by making use of the other pre-computed distances. The
technique of storing and using pre-computed distances may be
effective for data domains with small cardinality, however, the



space requirements and the search complexity becomes
overwhelming for larger domains.

In [Uhl91], Uhlmann introduced two hierarchical index
structures for similarity search. The first one is the vp-tree
(vantage-point tree). The vp-tree basically partitions the data
space into spherical cuts around a chosen vantage point at each
level. This approach, referred to as the ball decomposition in the
paper is similar to the first method presented in [BK73]. At each
node, the distances between the vantage point for that node and
the data points to be indexed below that node are computed. The
median is found, and the data points are partitioned into two
groups, one of them accommodating the points whose distances
to the vantage point are less than or equal to the median distance,
and the other group accommodating the points whose distances
are larger than or equal to the median. These two groups of data
points are indexed separately by the left and right subbranches
below that node, which are constructed in the same way
recursively.

Although the vp-tree was introduced as a binary tree, it is
also possible to generalize it to a multi-way tree for larger
fanouts. In [Yia93], the vp-tree structure was enhanced by an
algorithm to pick vantage-points for better decompositions. In
[Chi94] the vp-tree structure is modified to answer nearest
neighbor queries. We talk about the vp-trees in detail in section
3.3.

The gh-tree (generalized hyperplane tree) structure was
also introduced in [Uhl91]. It is constructed as follows. At the top
node, two points are picked and the remaining points are divided
into two groups depending on which of these two points they are
closer to. The two branches for the two groups are built
recursively in the same way. Unlike the vp-trees, the branching
factor can only be two. If the two pivot points are well-selected at
every level, the gh-tree tends to be a well-balanced structure.

More recently, Brin introduced the GNAT (Geometric
Near-Neighbor Access Tree) structure [Bri95]. A k number of
split points are chosen at the top level. Each one of the remaining
points are associated with one of the k datasets (one for each split
point), depending on which split point they are closest to. For
each split point,  the minimum and maximum distances from the
points in the datasets of other split points are recorded. The tree
is recursively built for each dataset at the next level.  The
number of split points, k, is parameterized and is chosen to be a
different value for each data set depending on its cardinality.
The GNAT structure is compared to the binary vp-tree, and it is
shown that  the preprocessing (construction) step of  GNAT is
more expensive than the vp-tree, but its search algorithm makes
less number of distance computations in the experiments for
different data sets.

3.3 Vantage point tree structure

Let us briefly discuss the vp-trees to explain the idea of
partitioning the data space around selected points (vantage
points) at different levels forming a hierarchical tree structure
and using it for effective filtering in similarity search queries.

The structure of a binary vp-tree is very simple. Each
internal node is of the form (Sv, M, Rptr, Lptr), where Sv is the
vantage point, M is the median distance among the distances of

all the points (from Sv) indexed below that node, and Rptr and Lptr

are pointers to the right and left branches. Left branch of the
node indexes the points whose distances from Sv are less than or

equal to M, and right branch of the node indexes the points
whose distances from Sv are greater than or equal to M. In leaf
nodes, instead of the pointers to the left and right branches,
references to the data points are kept.

Given a finite set  S={S1, S2, .. , Sn} of n objects, and a
metric distance function d(Si, Sj), a binary vp-tree V on S is
constructed as follows.

1) If S= 0, then create an empty tree.
2) Else, let Sv be an arbitrary object from S. (Sv is the

      vantage point)
M = median of { d(Si, Sv) | ∀Si ∈ S}
Let Sl = { Si | d(Si, Sv) ≤ M, where Si ∈ S and Si ≠ Sv}
      Sr = { Sj | d(Sj, Sv) ≥ M, where Sj ∈ S}
      (the cardinality of Sl  and Sr  should be equal)
Recursively create vp-trees on Sl and on Sr  as the left and
right branches of the root of  V.

The binary vp-tree is balanced and therefore can be
easily paged for storage in secondary memory. The construction
step requires O(n log2 n) distance computations.

For a given query object Q, the set of data objects that
are within distance  r of  Q are found using the search algorithm
given below.

1) If d(Q , Sv) ≤ r,  then Sv (the vantage point at the root)
is in the answer set.
2) If d(Q, Sv) + r ≥ M (median), then recursively search
the right branch
3) If d(Q, Sv) - r  ≤ M, then recursively search the left
branch.
 (note that both branches can be searched if both search

conditions are satisfied)

The correctness of this simple search strategy can be
proven easily by using the triangle inequality of distances among
any three objects in a metric data space (see Appendix).

Generalizing binary vp-trees into multi-way vp-trees.
The binary vp-tree can be easily generalized into a multi-

way tree structure for larger fanouts at every node hoping that the
decrease in the height of the tree would also decrease the number
of distance computations. The construction of a vp-tree of order
m is very similar to that of a binary vp-tree. Here, instead of
finding the median of the distances between the vantage point
and the data points, the points are ordered with respect to their
distances from the vantage point, and partitioned into m groups
of equal cardinality. The distance values used to partition the
data points are recorded in each node. We will refer to those
values as cutoff values. There are m-1 cutoff values in a node.
The m groups of data points are indexed below the root node by
its m children, which are themselves vp-trees of order m created
in the same way recursively. The construction of an m-way vp-
tree requires O(n logm n) distance computations. That is, creating
an m-way vp-tree decreases the number of distance computations
by a factor of  log2 m compared to binary vp-trees at the
construction stage.



However, there is one problem with high-order vp-trees
when the order is large. The vp-tree partitions the data space into
spherical cuts (see Figure 1). Those spherical cuts become too
thin  for high-dimensional domains, leading the search regions to
intersect with many of them, and therefore leading to more
branching in doing similarity searches. As an example, consider
an N-dimensional Euclidean Space where N is a large number,
and a vp-tree of order 3 is built to index the uniformly distributed
data points in that space. At the root level, the N-dimensional
space is partitioned into three spherical regions, as shown in
Figure 1. The three different regions are colored differently and
labeled as 1, 2, and 3. Let R1 be the radius of region 1, and R2 be
the radius of the sphere enclosing regions 1 and 2. Because of the
uniform distribution assumption, we can consider the N-
dimensional volumes of regions 1 and 2 to be equal. The volume
of an N-dimensional sphere is directly proportional to the Nth

factor of its radius, so we can deduce that R2 = R1 * (2)1/N . The
thickness of the spherical shell of region 2 is R2 - R1 = R1 *( 21/N

- 1). To give an idea, for N=100, R2 = 1.007 R1.

So, when the spherical cuts are very thin, the chances of
a search operation descending down to more than one branch
becomes higher. If a search path descends down  to k out of m
children of a node, then k distance computations are needed at
the next level, where the distance between the query point and
the vantage point of each child node has to be found. This is
because the vp-tree keeps a different vantage point for each node
at the same level. Each child of a node is associated with a
region that is like a spherical shell (other than the innermost
child, which has a spherical region), and the data points indexed
below that child node all belong to that region. Those regions are
disjoint for the siblings. As the vantage point for a node has to be
chosen among the data points indexed below a node, the vantage
points of the siblings are all different.

4. Multi-vantage-point trees

In this section, we present the mvp-tree (multi vantage
point  tree). Similar to the vp-tree, the mvp-tree partitions the
data space into spherical cuts around vantage points. However, it
creates partitions with respect to more than one vantage point at
one level and keeps extra information for the data points in the

leaf nodes for effective filtering of non qualifying points in a
similarity search operation.

4.1 Motivation

Before we introduce the mvp-tree, we first discuss a few
useful observations that can be used as heuristics for a better
search structure. The idea is to partition the data space around a
vantage point at each level for a hierarchical search. 

Observation 1: It is possible to partition a spherical
shell-like region using a vantage point chosen from outside the
region. This is shown in Figure 2, where a vantage point outside
of the region is used to partition it into three parts, which are
labeled as 1,2,3 and shaded differently (region 2 consists of two
disjoint parts). The vantage point does not have to be from inside
the region, unlike the strategy followed in vp-trees.

This means that we can use the same vantage point to
partition the regions associated with the nodes at the same level.
When the search operation descends down to several branches,
we do not have to make a different distance computation at the
root of each branch. Also, if we can use the same vantage point
for all the children of a node, we can as well keep that vantage
point in the parent. This way, we would be keeping more than
one vantage point in the parent node. We can avoid creating the
children nodes by incorporating them in the parent. This could be
done by increasing the fanout of the parent node. The mvp-tree
takes this approach, and uses more than one vantage points in the
nodes for higher utilization.

Observation 2: In the construction of the vp-tree
structure, for each data point in the leaves, we compute the
distances between that point and all the vantage points on the
path from the root node to the leaf node that keeps that data
point. So for each data point, (logm n) distance computations (for
a vp-tree of order m) are made, which is equal to the height of
the tree. In vp-trees, such distances (other than the distance to
the vantage point of the leaf node) are not kept,. However, it is
possible to keep these distances for the data points in the leaf
nodes to provide further filtering at the leaf level during search
operations. We use this idea in mvp-trees. In mvp-trees, for each
data point in  a leaf, we also keep the first p distances (here, p is
a parameter) that are computed in the construction step between
that data point and the vantage points at the upper levels of the
tree. The search algorithm is modified to make use of these
distances.

3

2
1

R 1

R 2

 Figure 1. The root level partitioning of a vp-tree with
branching factor 3. The three different regions are
labelled 1, 2, 3, and they are all shaded differently.

 Figure 2. Partitioning a spherical shell-like
region using a vantage point from outside.



Having shown the motivation behind the mvp-tree
structure, we explain the construction and search algorithms
below.

4.2 mvp-tree structure

The mvp-tree uses two vantage points in every node.
Each node of the mvp-tree can be viewed as two levels of a
vantage point tree (a parent node and all its children) where all
the children nodes at the lower level use the same vantage point.
This makes it possible for an mvp-tree node to have large
fanouts, and a less number of vantage points in the non-leaf
levels.

In this section, we will show the structure of mvp-trees
and present the construction algorithm for binary mvp-trees. In
general, an mvp-tree has 3 parameters:

• the number of partitions created by each vantage point
(m),
• the maximum fanout for the leaf nodes (k),
• and the number of distances for the data points at the
leaves to be kept (p).

In binary mvp-trees, the first vantage point (we will refer
to it by Sv1) divides the space into two parts, and the second
vantage point (we will refer to it by Sv2) divides each of these
partitions into two. So the fanout of a node in a binary mvp-tree
is four. In general, the fanout of an internal node is denoted by
the parameter m2, where m is the number of partitions created by
a vantage point. The first vantage point creates m partitions, and
the second point creates m partitions from each of these
partitions created by the first vantage point, making the fanout of
the node m2.

In every internal node, we keep the median, M1, for the
partition with respect to the first vantage point, and medians,
M2[1] and M2[2], for the further partitions with respect to the
second vantage point.

 Sv1 

 Sv2       |M2[1]|

 M1

|M2[2]|

 {          child pointers           }

 Sv1           D1[1]     D1[2]      ...     D1[k]

 Sv2          D2[1]     D2[2]      ...     D2[k]

    P1 ,       P2 ,                 Pk ,
 P1.PATH   P2.PATH  ...     Pk.PATH

Internal node

Leaf node
(P1 thru Pk are the data points)

In the leaf nodes, we keep the exact distances between
the data points in the leaf and the vantage points of that leaf.
D1[i] and D2[i] (i=1, 2, .. k) are the distances from the first and

second vantage points respectively, where k is the fanout for the
leaf nodes which may be chosen larger than the fanout of the
internal nodes m2.

For each data point x in the leaves, the array x.PATH[p]
keeps the pre-computed distances between the data point x and
the first p vantage points along the path from the root to the leaf
node that keeps x. The parameter p can not be bigger than the
maximum number of vantage points along a path from the root to
any leaf node. Figure 3 below shows the structure of internal and
leaf nodes of a binary mvp-tree.

Having given the explanation for the parameters and the
structure, we present the construction algorithm next. Note that,
we took m=2 for simplicity in presenting the algorithm

Construction of mvp-trees
Given a finite set  S={S1, S2, .. , Sn} of n objects, and a

metric distance function d(Si, Sj), an mvp-tree with parameters
m=2, k, and  p is constructed on S as follows.

(Here, we use the notation we have explained above. The
variable level is used to keep track of the number of vantage
points used along the path from the current node to the root. It is
initialized to 1.)

1) If S= 0, then create an empty tree and quit.

2) If S≤ k+2, then
2.1) Select an arbitrary object from S. (Sv1 is the first
vantage point)
2.2) Let S := S - { Sv1 } (Delete Sv1 from S)
2.3) Calculate all d(Si, Sv1) where Si ∈ S, and store in
array D1.
2.4) Let Sv2 be the farthest point from Sv1 in S.(Sv2 is
the second vantage point)
2.5) Let S := S - { Sv2 } (Delete Sv2 from S)
2.6) Calculate all d(Sj, Sv2) where Sj ∈ S, and store in
array D2.
2.7) Quit.

3) Else if S> k+2, then
3.1) Let Sv1 be an arbitrary object from S. (Sv1 is the
first vantage point)
3.2)Let S := S - { Sv1 } (Delete Sv1 from S)
3.3) Calculate all d(Si, Sv1) where Si ∈ S
       if (level ≤ p) Si.PATH[l] = d(Si, Sv1).
3.4) Order the objects in S with respect to their
distances from Sv1.
M1= median of  { d(Si, Sv1) | ∀Si ∈ S} Break this list
into 2 lists of equal cardinality at the median. Let SS1

and SS2 these two sets in order, i.e., SS2 keeps the
farthest objects from Sv1.
3.5) Let Sv2 be an arbitrary object from SS2. (Sv2  is
the second vantage point)
3.6) Let SS2 := SS2 - { Sv2 } (Delete Sv2 from SSm)
3.7) Calculate all d(Sj, Sv2) where Sj ∈ SS1 or Sj ∈
SS2.
        if (level < p) Sj.PATH[level+1] = d(Sj, Sv2)
3.8) M2[1]= median of { d(Sj, Sv2) | ∀Sj ∈ SS1}
       M2[2]= median of { d(Sj, Sv2) | ∀Sj ∈ SS2}
3.9) Break the list SS1 into two sets of equal
cardinality at M2[1].

 Figure 3. Node structure for a binary mvp-tree.



       Similarly, break SS2 into two sets of equal
cardinality at M2[2].
       Let level=level+2, and recursively create the
mvp-trees on these four sets.

The mvp-tree construction can be modified easily so that
more than 2 vantage points can be kept in one node. Also, higher
fanouts at the internal nodes are also possible, and may be more
favorable in most cases.

Observe that, we chose the second vantage point to be
one of the farthest points from the first vantage point. If the two
vantage points were close to each other, they would not be able
to effectively partition the dataset. Actually, the farthest point
may very well be the best candidate for the second vantage point.
That is why we chose the second vantage point in a leaf node to
be the farthest point from the first vantage point of that leaf node.
Note that any optimization technique (such as a heuristic to chose
the best vantage point) for vp-trees can also be applied to the
mvp-trees.

The construction step requires O(n logm n) distance
computations for the mvp-tree. There is an extra storage
requirement for the mvp-trees as we keep p distances for each
data point in the leaf nodes, however it does not change the order
of storage complexity.

A full mvp-tree with parameters (m,k,p) and height h has
2*(m2h -1)/( m2 -1) vantage points. That is actually twice the
number of nodes in the mvp-tree as we keep two vantage points
at every node. The number of data points that are not used as
vantage points is (m2(h-1))*k, which is the number of leaf nodes
times the capacity (k) of the leaf nodes.

It is a good idea to keep k large so that most of the data
items are kept in the leaves. If  k is kept large the ratio of the
number of vantage points versus the number of points in the leaf
nodes becomes smaller, meaning that most of the data points are
accommodated in the leaf nodes. This makes it possible to filter
out many non-qualifying (out of the search region) points from
further consideration by making use of the p pre-computed
distances for each leaf point. In other words, instead of making
many distance computations with the vantage points in the
internal nodes, we delay the major filtering step of the search
algorithm to the leaf level where we have more effective means
of avoiding unnecessary distance computations.

4.3 Search algorithm for mvp-trees

We present the search algorithm below. Note that the
search algorithm proceeds depth-first for mvp-trees. We need to
keep the distances between the query object and the first p
vantage points along the current search path as we will be using
these distances for eliminating data points in the leaves from
further consideration (if possible). An array, PATH[], of size p, is
used to keep these distances.

Similarity Search in mvp-trees

For a given query object Q, the set of data objects that
are within distance r of  Q are found using the search algorithm
as follows:

1) Compute the distances d(Q, Sv1) and d(Q, Sv2).
 (Sv1 and Sv2 are first and second vantage points)

                  if d(Q, Sv1) ≤ r  then Sv1 is in the answer set.
    if d(Q, Sv2) ≤ r  then Sv2 is in the answer set.

2) if the current node is a leaf node,
     For all data points (Si) in the node,

2.1) Find d(Si, Sv1) and d(Si, Sv2) from the arrays D1

and D2 respectively.
2.2) if  [d(Q, Sv1) - r  ≤ d(Si, Sv1) ≤ d(Q, Sv1) + r] and
     [d(Q, Sv2) - r  ≤ d(Si, Sv2) ≤ d(Q, Sv2) + r] ,
then

     if for all i=1 .. p
   ( PATH[i] - r ≤ Si.PATH[i] ≤ PATH[i] + r )

holds,
     then compute d(Q, Si). If   d(Q, Si) ≤ r, then Si

is in the answer set.

3) Else if  the current node is an internal node
3.1) if (l ≤ p) PATH[l] = d(Q, Sv1),
       if (l<p) PATH[l+1] = d(Q, Sv2).
3.2) if d(Q, Sv1) + r ≤ M1, then

if  d(Q, Sv2) + r ≤ M2[1] then recursively
search the first branch with l=l+2
if  d(Q, Sv2) - r ≥ M2[1] then recursively
search the second branch with l=l+2

3.3) if d(Q, Sv1) - r  ≥ M1, then
if  d(Q, Sv2) + r ≤ M2[2] then recursively
search the third branch with l=l+2
if  d(Q, Sv2) - r ≥ M2[2] then recursively
search the fourth branch with l=l+2

The efficiency of the search algorithm very much
depends on the distribution of distances among the data points,
query range, and the selection of vantage points. In the worst
case, most data points are relatively far away from each other
(such as randomly generated vectors in a high- dimensional
domain as in section 5). The search algorithm, in this case, can
make O(N) (N is the cardinality of the dataset) distance
computations. However, even in the worst case, the number of
distance computations made by the search algorithm is far less
than N, making it a significant improvement over linear search.
Note that, the claim on worst case complexity is true for all
distance based index structures simply because all of them use
the triangle inequality to filter out data points that are distant
from the query point.

In the next section, we present some experiments to
study the performance of mvp-trees.

5. Implementation

We have implemented the main memory model of the
mvp-trees with different parameters to test and compare it with
the vp-trees. The mvp-tree and the vp-trees are both
implemented in C under UNIX operating system. Since the
distance computations are very costly for high-dimensional
metric spaces, we use the number of distance computations as
the cost measure. We counted the number of distance
computations required for similarity search queries by both mvp
and vp-trees for the same set of queries for comparison.



5.1 Data Sets

Two types of data, high-dimensional Euclidean vectors
and gray-level MRI images (where each image has 256*256
pixels) are used for empirical study.

A. High-Dimensional Euclidean Vectors:

 We used two sets of 50.000 20-dimensional vectors as
data sets. Euclidean distance  metric is used as the distance
metric in both cases. For the first set, all vectors are chosen
randomly from a 20-dimensional hypercube with each side of
size 1. Each of these vectors is simply generated by randomly
choosing 20 real numbers from the interval [0,1]. The pairwise
distance distribution of these randomly chosen vectors are shown
as a histogram in Figure 4. The distance values are sampled at
intervals of length 0.01.

Note that this data set is highly synthetic. As the vectors
are uniformly distributed, they are mostly far away from each
other. Their distance distribution is similar to a sharp Gaussian
curve where the distances between any two points fall mostly
within the interval [1, 2.5] concentrating around the midpoint
1.75. As a result, the vantage points (in both vp-trees and mvp-
trees) always partition the space into thin spherical shells and
there is always a large, void spherical region in the center that
does not accommodate any data points. This distribution makes
both structures (or any other hierarchical method) ineffective in
queries having values of r (similarity measure) larger than 0.5,
although higher r values are quite reasonable for legitimate
similarity queries.

The second set of Euclidean vectors are generated in
clusters of equal size. The clusters are generated as follows.
First, a random vector is generated from the hypercube with each
side of size 1. This random vector becomes the seed for the
cluster. Then, the other vectors in the cluster are generated from
this vector or a previously generated vector in the same cluster
simply by altering each dimension of that vector with the
addition of a random value chosen from the interval [-ε, ε], where
ε is a small constant (such as between  0.1 to 0.2).

Since most of the points are generated from previously
generated points, the accumulation of differences may become
large, and therefore, there are many points that are distant from
the seed of the cluster (and from each other), and many are
outside of the hypercube of side 1. We call these groups of points
as clusters because of the way they are generated, not because
they are a bunch of points that are very close in the Euclidean
space. In Figure 5, we see the distance distribution histogram for
a set of clustered data where each cluster is of size 1000, and  ε
is 0.15. Again the distance values are sampled at intervals of size
0.01. One can quickly realize that this data set has a different
distance distribution where the possible pairwise distances have
a wider range. The distribution is not as sharp as it was for
random vectors. For this data set, we tested similarity queries
with r ranging from 0.2 to 1.0.

B. Gray-Level MRI Images:

We also experimented on 1151 MRI images with
256*256 pixels and 256 values of graylevel. These images are a
collection of MRI head scans of several people. Since we do not
have any content information on these images, we simply used L1

and L2 metrics to compute the distances between images.
Remember that the Lp distance between any two N-dimensional
Euclidean vectors X and Y (denoted by Dp(X,Y) ) is calculated
as follows:

( ) ( )pD X Y
p

iX iY
i

Np
, = −

=
∑ | |

1

L2 metric is the Euclidean distance metric. An L1 distance
between two vectors is simply found by accumulating absolute
differences at each dimension.

When calculating distances, we simply treat these images
as 256*256=65536-dimensional Euclidean vectors, and
accumulate the pixel by pixel intensity differences using L1 or L2

metrics. This data set is a good example where it is very
desirable to decrease the number of distance computations by
using an index structure. The distance computations not only
require a large number of arithmetic operations, but also require
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considerable I/O time since those images are kept on secondary
storage using around 61K per image (images are in binary PGM
format using one byte per pixel).

We see the distance distributions of the MRI images for
L1 and L2 metrics in the two histograms shown below in Figures
6 & 7. There are (1150*1151)/2 = 658795 different pairs of
images and hence, that many computations. The L1 distance
values are normalized by 10000 to avoid large values in all
distance calculations between images. The L2 distance values are
normalized by 100 similarly. After the normalization, the
distance values are sampled at intervals of length 1 in each case.

The distance distribution for the images is much different
than the one for Euclidean vectors. There are two peaks,
indicating that while most of the images are distant from each
other, some of them are quite similar, probably forming several
clusters. This distribution also gives us an idea about choosing
meaningful tolerance factors for similarity queries, in these sense
that we can see what distance ranges can be considered similar.
If L1 metric is used, a tolerance factor (r) around 500000 is quite
meaningful, where if L2 metric is used, the tolerance factor
should be around 3000 .

It is also possible to use other distance measures as well.
Any Lp metric can be used  just like L1 or L2. An Lp metric can

also be used in a weighted fashion where each pixel position
would be assigned a weight that would be used to multiply
intensity differences of two images at that pixel position when
computing the distances. Such a distance function can be easily
shown to be metric. It can be used to give more importance to
particular regions (for example: center of the images) in
computing distances.

For gray level images, color histograms can be used to
compute similarity. Unlike color images, there is no cross talk
(between the colors) in graylevel (or any mono-color) images,
and therefore, an Lp metric can be used to compute distances
between color histograms. The histograms will simply be treated
as if they are 256-dimensional vectors, and then, an Lp metric can
be used.

5.2 Experimental Results

A. High-Dimensional Euclidean Vectors:

In Figures 8 and 9, we present the search performances
of four tree structures for two different data sets of Euclidean
vectors. The vp-trees of order 2 and 3, and two mvp-trees with
the (m,k,p) values (3,9,5) and (3,80,5) respectively are the four
structures. We have experimented with vp-trees of higher order,
however higher order vp-trees gave similar or worse
performances, therefore, we do not present the results for them.
We have also tried several mvp-trees with different parameters,
however, we have observed that order 3 (m) gives the most
reasonable results compared to order 2 or any value higher than
3. We kept 5 (p) reference points for each data point in the leaf
nodes of the mvp-trees. The two mvp-trees that we display the
results for have different k (leaf capacity) values to see how it
effects the search efficiency. All the results are obtained by
taking the average of 4 different runs for each structure where a
different seed (for the random function used to pick vantage
points) is used in each run. The result of each run is obtained by
averaging the results of 100 search queries with randomly
selected query objects from the 20-dimensional hypercube with
each side of size 1. In Figures 8 and 9, the mvp-tree with (m,k,p)
values (3,9,5) is referred as mvpt(3,9) and the other mvp-tree is
referred as mvpt(3,80) since both trees have the same p values.
The vp-trees of order 2 and 3 are referred as vpt(2) and vpt(3)
respectively.

As shown in Figure 8, both mvp-trees perform much
better than the vp-trees, and vpt(2)  is slightly better than
(around 10%) vpt(3). mvpt(3,9) makes around 40% less number
of distance computations compared to the vpt(2). The gap closes
slowly when the query range increases, where mvpt(3,9) makes
20% less distance computations for the query range of 0.5.
mvpt(3,80) performs much better, and needs around 80% to 65%
percent less number of distance calculations compared to vpt(2)
for small ranges (0.15 to 0.3). For query ranges of 0.4 and 0.5,
mvpt(3,80) makes 45% and 30% (respectively) less distance
computations compared to vpt(2). For higher query ranges, the
gain in efficiency decreases, which is due to the fact that the data
points in the domain are themselves quite distant from each
other, making it harder to filter out non-qualifying points for the
search operations.
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Figure 9 shows the performance results for the data set
where the vectors are generated in clusters. For this data set,
vpt(3) performs slightly better than vpt(2) (around 10%). The
mvp-trees perform again much better than vp-trees. mvpt(3,80)
makes around 70% - 80% less number of distance computations
than vpt(3) for small query ranges (up to 0.4), where the
mvpt(3,9) makes around 45% - 50% less number of
computations for the same query ranges. For higher query ranges,
the gain in efficiency decreases slowly as the query range
increases. For the query range 1.0, mvpt(3,80) requires 25% less
distance computations compared to vpt(3) and mvpt(3,9) requires
20% less. We have also run experiments on the same type of data
with different cluster sizes, however the percentages did not
differ much.

We can summarize our observations as follows:

• Higher order vp-trees perform better for wider distance
distributions, however the difference is not much. For datasets
with narrow distance distributions, low-order vp-trees are better.

• mvp-trees perform much better than vp-trees. The idea
of increasing leaf capacity pays off since it decreases the number
of vantage points by shortening the height of the tree, and delay
the major filtering step to the leaf level .

• For both random and clustered vectors, mvp-trees with
high leaf-node capacity perform a considerable improvement over
vp-trees, especially for small query ranges (up to 80%). The
efficiency gain (in terms of number of distance computations
made) is smaller for larger query ranges, but still significant
(30% for the largest ranges we have tried).

B. Gray-Level MRI Images:

We display the experimental results for the similarity
search performances of vp and mvp trees on MRI images in
Figures 10 and 11. For this domain, we present the results for
two vp-trees and three mvp-trees. The vp-trees are of order 2 and
3, referred as vpt(2) and vpt(3). All the mvp-trees have the same
p parameter which is 4. The three mvp-trees are; mvpt(2,16),
mvpt(2,5) and mvpt(3,13) where for each of them, the first
parameter is the order (m) and the second one is the leaf capacity
(k). We did not try for higher m, or k values as the number of
data items in our domain is small (1151). Actually, 4 is the
maximum p value common to all three mvp-tree structures
because of the low cardinality of the data domain. The results are
averages taken after different runs for different seeds and for 30
different query objects in each run, where each query object is an
MRI image selected randomly from the data set.

Figure 10 shows the search performance of these 5
structures when L1 metric is used. Between the vp-trees, vpt(2)
performs around 10-20% percent better than vpt(3). mvpt(2,16)
and mvpt(2,5) perform very close to each other, both having
around 10% edge over vpt(2). The best one is mvpt(3,13)
performing around 20-30% less number of distance computations
compared to vpt(2).
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 Figure  8. Search performances of vp and mvp
 trees for randomly generated Euclidean vectors.

 Figure 9. Search performances of vp and mvp
 trees for Euclidean vectors generated in clusters.

 Figure  10. Similarity search performances of
 vp and mvp trees on MRI images when L1 metric
 is used for distance computations.



Figure 11 shows the search performances when L2 metric
is used. Similar to the case when L1 metric was used, vpt(2)
outperforms vpt(3) wih a similar approximate 10% margin.
mvpt(2,16) performs better than vpt(2) but its performance
degrades for higher query range values. This should not be taken
as a general result, because the random function that is used to
pick vantage points  has a considerable effect on the efficiency of
these structures. Similar to the previous case, mvpt(3,13) gives
the best performance among all the structures, once again making
20-30% less distance computations compared to vpt(2).

In summary, the experimental results for the dataset of
gray-level images support our previous observations about the
efficiency of mvp-trees with high leaf-node capacity. Even
though our image dataset has a very low cardinality (leading to
shallow tree structures), we were able to get around 20-30% gain
in efficiency. If the experiments were conducted on alarger set of
images, we would expect higher performance gains.

6. Conclusions

In this paper, we introduced the mvp-tree, which is a
distance based index structure that can be used in any metric
data domain. Like the other distance based index structures, the
mvp-tree does not make any assumption on the geometry of the
application space, and provides a filtering method for similarity
search queries only based on relative distances between the data
objects. Similar to an existing structure, the vp-tree,  mvp-tree
takes the approach of partitioning the data space around vantage-
points, but behaves much clever in choosing these points and
makes use of the pre-computed distances (at the construction
stage) when answering similarity search queries.

Mvp-trees, like other distance based index structures, is
a static index structure. It is constructed in a top down fashion on
a static set of data points, and guarantees the fact that it is a
balanced structure. Handling update operations (insertion and
deletion) without major restructuring, and without violating the
balanced structure of the tree is an open problem. In general, the
difficulty for distance-based index structures stems from the fact

that it is not possible or it is not cost efficient to impose a global
total order or a grouping mechanism on the objects of the
application data domain. We plan to look further into this
problem of extending mvp-trees with insertion and deletion
operations that would not imbalance the structure.

It would be also interesting to determine the best vantage
point for a given set of data objects. Methods to determine better
vantage points with a little extra cost would pay off in search
queries by causing less number of distance computations to be
done. We also plan to look further into this problem.
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Appendix

Let us show the correctness of the search algorithm for
vp-trees.

Let Q be the query object, r be the query range, Sv be the
vantage point of a node that we visit during the search, and M be
the median distance value for the same node. We have to show
that

if d(Q, Sv) + r < M then we do not have to search the
right branch. (I)

if d(Q, Sv) -  r > M then we do not have to search the left
branch.  (II)

For (I), Let X denote any data object indexed in the right branch,
i.e.,

d(X, Sv) ≥ M (1)
M > d(Q, Sv) + r (2)   (hypothesis)
d(Q, Sv) + d(Q, X) ≥ d(X, Sv) (3)   (triangle inequality)
d(Q,X) > r (4)   (summation

of (1),(2), and (3))
Because of (4), X cannot be in the query result, which means that
we do not have to check any object in the right branch.

For (I), Let Y denote any data object indexed in the left branch,
i.e.,

M ≥ d(Y, Sv) (5)
d(Q, Sv) - r > M (6)    (hypothesis)
d(Y, Sv) + d(Q,Y) ≥ d(Q, Sv) (7)    (triangle inequality)
d(Q,Y) > r (8)    (summation

of (5),(6), and (7))
Because of (8), Y cannot be in the query result, which means that
we do not have to check any object in the left branch.


