
Generalising Monads to ArrowsJohn HughesNovember 10, 19981 IntroductionOne of the distinguishing features of functional programming is the widespreaduse of combinators to construct programs. A combinator is a function whichbuilds program fragments from program fragments; in a sense the program-mer using combinators constructs much of the desired program automatically,rather than writing every detail by hand. The freedom that functional languagesprovide to manipulate functions | program fragments | as �rst-class citizenssupports combinator programming directly.Some combinators, such as the well-known list-processing operators mapand �lter, encapsulate generally useful program constructions and may appearin almost any functional program. Others are tailored to particular applicationareas, and are often collected into libraries that enable applications in thatarea to be built quickly and easily. For example, parsing is an applicationarea that has been extensively studied. Given an appropriate library of parsingcombinators, a parser for the grammarG ::= a G b j cmight be programmed in Haskell [Hud92, PH96] asgram = symbol \a" c̀at` gram c̀at` symbol \b"+++ symbol \c"A note on syntax: in Haskell, function application is written without brackets,so symbol \a" denotes a call of the function symbol with argument \a", and anyfunction of two arguments may be used as an in�x operator by enclosing it inback-quotes. In this example, symbol is a function which constructs a parserthat accepts just the given token, c̀at` is a binary operator which combinestwo parsers into a parser that runs both in sequence, +++ is a binary operatorwhich combines two parsers into one which tries both as alternatives1, and theentire declaration is a recursive de�nition of a parser gram which recognises thenon-terminal G.1We follow the fairly widespread convention that long operator names are typeset withtheir characters overlapping, so that they look like a single name. In reality, +++ is just +++.1

Although the idea of programming with combinators is quite old, the de-sign of combinator libraries has been profoundly in
uenced in recent years byWadler's introduction of the concept of a monad into functional programming[Wad90, Wad92, Wad95]. We shall discuss monads much more fully in the nextsection, but for now, su�ce it to say that a monad is a kind of standardisedinterface to an abstract data type of `program fragments'. The monad inter-face has been found to be suitable for many combinator libraries, and is nowextensively used. Numerous bene�ts
ow from using a common interface: totake just one example, Haskell has been extended with special constructions tomake the use of monads particularly convenient.It is therefore a matter for some concern when libraries emerge which cannot,for fundamental reasons, use the monad interface. In particular, Swierstra andDuponcheel have developed a very interesting library for parsing LL-1 grammars[SD96], that avoids a well-known ine�ciency in monadic parsing libraries bycombining the construction of a parser with a `static analysis' of the programso constructed. Yet Swierstra and Duponcheel's optimisation is incompatiblewith the monad interface. We believe that their library is not just an isolatedexample, but demonstrates a generally useful paradigm for combinator designthat falls outside the world of monads. We shall look more closely at their ideain section 3.Inspired by Swierstra and Duponcheel's library, I sought a generalisation ofthe monad concept that could also o�er a standardised interface to libraries ofthis new type. My proposal, which I call arrows, is the subject of this paper.Pleasingly, the arrow interface turned out to be applicable to other kinds ofnon-monadic library also, for example the fudgets library for graphical userinterfaces [CH93], and a new library for programming active web pages. Theseapplications will be described in sections 6 and 9.While arrows are a little less convenient to use than monads, they havesigni�cantly wider applicability. They can therefore be used to bring the bene�tsof monad-like programming to a much wider class of applications.2 Background: Library Design Using MonadsWhat, then, is a monad? In Haskell, the monad interface can be de�ned as aclass: class Monad m wherereturn :: a! m a(>>=) :: m a! (a! m b)! m bRead this as follows: a parameterised type m is a monad if it supports the twooperations return and >>= (pronounced `bind') with the types given. Intuitively,we think of a value of type m a as representing a computation with result of typea| a program fragment. The return operation constructs a trivial computation2

that just delivers its argument as its result. The >>= operation combines twocomputations in sequence, passing the result of the �rst as an argument to thesecond | hence the type of the second argument of >>=: it is a function thatconstructs the second computation, rather than just a computation.2.1 An Example: A Monad to Manage FailuresFor example, consider the type Maybe de�ned bydata Maybe a = Just a j Nothing(This declaration introduces a new parameterised typeMaybe with two construc-tors, Just and Nothing. A value of type Maybe a is either of the form Just x,where x is a component of type a, or of the form Nothing.) This type can beused to represent possible failure: a function which intuitively returns a resultof type t, but may fail, can be de�ned to return a result of type Maybe t instead,where Nothing represents failure. This idea can be used more conveniently if wede�ne a combinator library to take care of failure handling.To do so, we declare the type Maybe to be a monad; that is, we give imple-mentations of return and >>= for this type. In Haskell, we writeinstance Monad Maybe wherereturn a = Just ax >>= f = case x ofJust a ! f aNothing ! Nothingwhere x >>= f fails immediately, without calling f , if its �rst argument x fails.Using these combinators we can write functions which handle failure prop-erly without any explicit tests for Just and Nothing. For example, the followingfunction adds together two possibly-failing integers, failing itself if either argu-ment does: add :: Maybe Int! Maybe Int! Maybe Intadd x y = x >>= �a!y >>= �b!return (a+ b)(The layout here is well suited to monadic programs, but may be confusing at�rst: the body of the �-expression �a ! : : : extends to the end of the entireright hand side!)To complete a useful library for failure handling we must add at least acombinator to cause a failure, for examplefail :: Maybe afail = Nothing3

Now we can treat the Maybe type as abstract, and write programs that causeand propagate failures just using the operators fail, return and >>=, without anyexplicit dependence on the way that failures are represented.2.2 Another Example: A Monad to Manage StateAs another example, an updateable state can be modelled in a purely functionallanguage by passing each function the current contents of the state as an ad-ditional parameter, and returning the possibly modi�ed state as a part of eachfunction's result. To do so by hand is tedious and error-prone, but fortunatelywe can encapsulate the state passing mechanism in a combinator library byusing a monad.In this case we represent a computation with result type a and a state oftype s by a value of the typenewtype StateMonad s a = SM (s! (a; s))(The Haskell newtype declaration introduces a new type isomorphic to anexisting one, where the constructor names the isomorphism). For any statetype s, the partially applied type StateMonad s (which denotes a parameterisedtype with one remaining parameter) is a monad:instance Monad (StateMonad s) wherereturn a = SM (�s! (a; s))x >>= f = SM (�s! let SM x0 = x(a; s0) = x0 sSM f 0 = f a(b; s00) = f 0 s0in (b; s00))With these de�nitions, we can write programs which pass around a state justin terms of return and >>=; there is no need to manipulate the state explicitly.Notice that >>= must pass the modi�ed state s0 returned by its �rst argumentto its second, rather than the original state, and must return the modi�ed statereturned by its second argument as part of its own result. If one attempts topass a state around by hand, rather than by using combinators, then it is veryeasy to forget a 0 somewhere, with strange bugs as a result.To complete a library for state passing we must provide combinators forreading and modifying the state. For example,fetch :: StateMonad s sfetch = SM (�s! (s; s))store :: s! StateMonad s ()store x = SM (�s! ((); x))4

Now the StateMonad type can be made abstract, and stateful programs can bewritten just in terms of the combinators. For example, a function to incrementa counter: tick :: StateMonad Int Inttick = fetch >>= �n!store (n+ 1) >>= �()!return n2.3 Monadic Parsing CombinatorsIn practice, combinator libraries are usually based on monads providing a combi-nation of features. For example, a parser for values of type a can be representedby the type newtype Parser s a = P ([s]! Maybe (a; [s]))where s is the type used to represent symbols in the parser's input, and [s] isHaskell's notation for the type list-of-s. Such a parser is invoked by applying itsrepresentation to a list of symbols to parse; its result indicates whether or notparsing was successful, and in the event of success contains both the value parsedand the remaining, unparsed input. For example, a parser which recognises aparticular symbol can be de�ned bysymbol :: s! Parser s ssymbol s = P (�xs! case xs of[]! Nothing(x : xs0)! if x = s then Just (s; xs0) else Nothing)This parser fails if the input is empty or begins with the wrong symbol, andsucceeds with one symbol consumed from the input otherwise.This representation of parsers supports a combination of failure handling andstate passing, where the state is the unparsed input. It can be declared to be amonad just like the Maybe and StateMonad types above | see Wadler's articlesfor details. Further combinators can then be added to build up a completelibrary for parsing based on this monad.2.4 Why Use Monads?We have now seen that monads can be used as a basis for combinator libraries,but why should they be used? Why have monads become so ubiquitous inHaskell programs today?One reason, of course, is that using monads simpli�es code dramatically. Itshould be clear that writing a parser with explicit tests for failure and explicitpassing of the input here and there, would be much more labour intensive than5

writing one in terms of symbol, return and >>=. However, this is an advantage ofusing any combinator library to encapsulate coding details, and does not arguefor using monads in particular.Another reason for using monads is that they o�er a design guideline forcombinator libraries: it is often a good start to begin by de�ning a suitablemonad. For example, it is fairly clear that a library for parsing should include acombinator to invoke two parsers in sequence, but there are many possible waysin which such a combinator might handle the two parsers' results. In some earlyparsing libraries the two results were paired together, in others the sequencingcombinator took an extra parameter, a function to combine the results. Themonadic operator >>= is more general than either of these: both may be easilyde�ned in terms of >>=, but the converse is not true. By basing a parsinglibrary on a monad, the designer gives the user more
exibility than these adhoc alternatives. Indeed, we know from experience that the monadic interfacegives the library user great power.On the other hand, the monad interface also gives the implementor of a com-binator library
exibility, because there are so many possible implementations.We have already seen three examples of monads; in fact, using monad trans-formers [KW92, LHJ95], we can systematically construct an in�nite variety ofmonads. A systematic approach to monad design helps the implementor to �ndan appropriate type to base a combinator library on, but also helps to makethe library `future proof'. Namely, should a future extension of the library re-quire a change in the representation of, say, parsers, then the implementor canrest assured that there are a myriad alternatives. To put it another way, themonad interface itself does not constrain the choice of monad type very muchat all; it exposes very little of the internal workings of the library to the rest ofthe program. Consequently monads help the library maintainer to upgrade acombinator library without forcing changes in the code that uses it.Finally, the fact that the monad operations return and >>= are overloaded inHaskell permits us to write generic monadic code, which can be used togetherwith any library based on a monad. A growing collection of such functions areprovided in the standard Haskell library. For example, we can generalise the addfunction above (for adding two possibly-failing integers) into a generic functionwhich applies any binary operator to the results of two computations.liftM2 :: Monad m) (a! b! c)! m a! m b! m cliftM2 op x y = x >>= �a!y >>= �b!return(x òp` y)(TheMonad m) in the type of liftM2 is a context, and means that this functionmay be used for any monad type m). Now the c̀at` operator on parsers thatwe saw in the introduction can be de�ned simply ascat = liftM2 (++)6

(where ++ is Haskell's concatenation operator for lists).Generic code of this sort represents functionality that the designer of anindividual combinator library no longer needs to provide: simply by basing thelibrary on a monad, one gains access to a host of useful functions for free. Thisin turn may signi�cantly reduce the work required to produce each new library.Taken together, these arguments provide rather compelling reasons for us-ing monads in combinator design; it is no wonder that they have become soubiquitous.2.5 Further Parsing CombinatorsLet us pursue our example of combinators for parsing a little further. One ofthe things a parser can do is to fail; to enable us to express this we de�ne acombinator which always fails. In fact, very many monads support a notion offailure, and so it is useful to overload the failure operator, just as we overloadedmonadic return and >>=. In Haskell this is done via a prede�ned classclass Monad m) MonadZero m wherezero :: m ato be read as follows: a parameterised type m is a MonadZero if it is a Monad,and additionally supports the operation zero. The implementation of zero forparsers is then de�ned byinstance MonadZero Parser wherezero = P (�s! Nothing)Moreover, many monads which support failure also support a choice com-binator, which tries two alternative ways to perform a computation, using thesecond if the �rst one fails. Haskell de�nes a prede�ned classclass MonadZero m) MonadPlus m where(++) :: m a! m a! m aand the implementation for parsers isinstance MonadPlus Parser whereP a++P b = P (�s! case a s ofJust (x; s0)! Just (x; s0)Nothing! b s)This is one of the fundamental building blocks of a parsing library: everyinteresting grammar de�nes some non-terminals via alternatives. But unfor-tunately, this de�nition contains a serious space leak. That is, it causes theretention of data by the garbage collector much longer than one would naivelyanticipate, with the result that parsers built with this operator use much morespace than one would reasonably expect.7

The problem is actually inherent to backtracking parsers. By inspection,the input to be parsed, s, cannot be garbage collected while the �rst parser ais running, because if a eventually fails, then s must be passed to b. In a lazylanguage such as Haskell, it is the very act of running parser a which forces thelist of tokens s to be constructed, perhaps by reading from a �le. Provided afails quickly, without forcing the evaluation of many elements of s, then littlespace is used. But if a actually succeeds in parsing a large part of the input s,then a great deal of space may be used to hold these already-parsed tokens, justin case a eventually fails and b needs to be invoked. Ironically, in practice a andb usually recognise quite di�erent syntactic constructs, so that if a succeeds inparsing many symbols then b will almost certainly fail as soon as it is invoked.Saving the input for b is costly only when it is unnecessary!This problem has been known since combinator libraries for parsing were�rst proposed, and Wadler for example gives a partial solution in his 1985paper [Wad85]. But the solutions known for monadic parser libraries are onlypartial, and depend on the programmer using an additional combinator similarto Prolog's `cut' operator, to declare that a parser need never backtrack beyond acertain point. Although monadic parser libraries work quite well in practice, thefundamental problem remains unsolved, which is really rather unsatisfactory.3 Swierstra and Duponcheel's Parsing LibraryIn 1996, Swierstra and Duponcheel found a di�erent way to solve this prob-lem. They restrict their attention to LL(1) parsers, in which choices betweenalternative parses can always be resolved by looking at the next token of theinput. Their implementation of a++b can therefore choose between a and b im-mediately, and there is no need to save the input s in case the other alternativeneeds to be tried later. The space leak that other parsing libraries su�er fromis completely cured.To implement this idea, Swierstra and Duponcheel need to be able to tell,given a parser, which tokens it might accept as the �rst in the input (and alsowhether or not it can accept the empty sequence of tokens). This means thatparsers can no longer be represented as functions, as they were in the previoussection. Instead, they are represented as a combination of static information,which can be computed before parsing begins, and a parsing function, whichcan be optimised on the basis of the static information. Paraphrasing Swierstraand Duponcheel, we might de�nedata StaticParser s = SP Bool [s]newtype DynamicParser s a = DP ([s]! (a; [s]))data Parser s a = P (StaticParser s) (DynamicParser s a)The �rst component of a parser tells us whether it matches the empty string,and which tokens it can accept �rst, while the second component is a function8

which does the actual parsing. For example, the combinator which accepts aparticular symbol can be de�ned assymbol :: s! Parser s ssymbol s = P (SP False [s]) (DP (�(x : xs)! (s; xs)))The dynamic parsing function need not test for an empty input, or check thatthe �rst symbol is s, because it will be invoked only when the preconditionsexpressed by the static part are satis�ed.Now we can make use of the static information to de�ne the choice combi-nator e�ciently:instance MonadPlus Parser whereP (SP empty1 starters1) (DP p1)++P (SP empty2 starters2) (DP p2) =P (SP (empty1 _ empty2) (starters1++starters2))(DP (�xs!case xs of[] ! if empty1 then p1 [] else p2 []x : xs0 ! if x 2 starters1 then p1 (x : xs0) elseif x 2 starters2 then p2 (x : xs0) elseif empty1 then p1 (x : xs0) else p2 (x : xs0)))It is clear from this de�nition that the choice of whether to invoke p1 or p2 ismade directly, and once made cannot be revised, so there is no need to retain apointer to the input, and consequently no space leak2.Just as the ++ operator computes the starter symbols and potential empti-ness of the parser it constructs, so must all of the other combinators. In mostcases this is straightforward to do, but unfortunately in the case of >>= it turnsout to be impossible! To see why, recall the type which >>= must have in thiscase: (>>=) :: Parser s a! (a! Parser s b)! Parser s bNow, the static properties of the result of >>= depend on the static propertiesof both the �rst and the second argument | for example, the combination canmatch the empty sequence only if both arguments can. Yet in the de�nitionof >>=, while we have access to the static properties of the �rst argument, wecannot obtain the static properties of the second one without applying it to avalue of type a. Such values will be constructed only during parsing, but forSwierstra and Duponcheel's idea to be useful we must compute the static parts2However, this de�nition is not completely realistic. It assumes that the user of the libraryreally does write an LL(1) parser, so that starters1 and starters2 are disjoint. In a realimplementation this would of course be checked. Moreover, the expensive tests of the formx 2 starters1 can be avoided by choosing a cleverer representation of parsers | see Swierstraand Duponcheel's article for details. 9

of parsers once and for all, before parsing begins. It is simply impossible to �nda de�nition of >>= which does this.Swierstra and Duponcheel's solution to this problem was to abandon the useof a monad: instead of >>= they de�ned a di�erent sequencing operator with thetype (<�>) :: Parser s (a! b)! Parser s a! Parser s bThis operator is perfectly adequate for expressing parsers, and poses no problemas far as computing static properties in advance of parsing is concerned. Nev-ertheless, the need to abandon the monad signature is worrying, for the reasonswe discussed above. Useful as it is, Swierstra and Duponcheel's parsing librarystands alone; it cannot, for example, be used with generic monadic functions.If this were an isolated case we might simply ignore it. But Swierstra andDuponcheel's idea is clearly much more widely applicable: to optimise a com-binator library, rede�ne the combinators to collect static properties of the com-putations they construct, and then use those static properties to optimise thedynamic computations. If we think of a library as de�ning a domain speci�c`language', whose constructions are represented as combinators, then Swierstraand Duponcheel's idea is to implement the language via a combination of astatic analysis and an optimised dynamic semantics. We may clearly wish todo this very often indeed. But every time we do, the type of >>= will make itimpossible to use a monadic interface!It is this observation that motivated us to search for a generalisation of mon-ads, a generic interface for combinator libraries that �ts a much wider class ofapplications. We will introduce the generalisation we found in the next section.3.1 On Category TheoryBefore we do so, we make a short digression on the subject of category the-ory. The concept of a monad was developed by category theorists long before iteventually found an application in functional programming. Some might �nd itsurprising that something so abstract as category theory should turn out to beuseful for something so concrete as programming. After all, category theory is,in a sense, so abstract as to be rather unsatisfying: it is `all de�nitions and notheorems', almost everything turns out to be a category if you look at it longenough, to say something is a category is actually to say very little about it.The same is true of most categorical concepts: they have very many possibleinstantiations, and so to say that something is, for example, a monad, is to sayvery little. This extreme generality is one reason why it is hard for the beginnerto develop good intuitions about category theory, but it is hardly surprising:category theory was, after all, developed to be a `theory of everything', a frame-work into which very many di�erent mathematical structures would �t. Butwhy should a theory so abstract be of any use for programming?10

The answer is simple: as computer scientists, we value abstraction! Whenwe design the interface to a software component, we want it to reveal as littleas possible about the implementation. We want to be able to replace the imple-mentation with many alternatives, many other `instances' of the same `concept'.When we design a generic interface to many program libraries, it is even moreimportant that the interface we choose have a wide variety of implementations.It is the very generality of the monad concept which we value so highly, it isbecause category theory is so abstract that its concepts are so useful for pro-gramming.It is hardly surprising, then, that the generalisation of monads that wepresent below also has a close connection to category theory. But we stressthat our purpose is very practical: it is not to `implement category theory', itis to �nd a more general way to structure combinator libraries. It is simply ourgood fortune that mathematicians have already done much of the work for us!4 ArrowsReturning to our problem, recall that Swierstra and Duponcheel were unable toimplement (>>=) :: Parser s a! (a! Parser s b)! Parser s bbecause its second argument is a function, and the only thing one can do with afunction is apply it. Lacking a suitable value of type a to apply it to, they couldnot extract any static information from it, and therefore could not constructthe static part of >>='s result.Our solution is simply to change the representation of this argument. Ratherthan a function of type a ! Parser s b we will use an abstract type, which wewill call an arrow from a to b. We solve Swierstra and Duponcheel's problem bychoosing a representation for arrows which makes static properties immediatelyaccessible.In fact there is no need to work with two abstract types, a monad type andan arrow type. Instead we will work purely with arrows. In general, an arrowtype will be a parameterised type with two parameters, supporting operationsanalogous to return and >>=. Just as we think of a monadic type m a as repre-senting a `computation delivering an a', so we think of an arrow type a b c (thatis, the application of the parameterised type a to the two parameters b and c)as representing a `computation with input of type b delivering a c'; arrows makethe dependence on input explicit.Just as Haskell de�nes a Monad class, so we shall de�ne an Arrow class withanalogous operators. But we must make dependence on an input explicit. Thuswhile the return operator, with type a ! m a, merely converts a value into acomputation, its analogue for arrows, with type (b ! c) ! a b c, converts a11

function from input to output into a computation. The analogue of >>= is justcomposition of arrows. We de�neclass Arrow a wherearr :: (b! c)! a b c(>>>) :: a b c! a c d! a b dFor any monad m, functions of type a ! m b are potential arrows. If wegive this type a name,newtype Kleisli m a b = K (a! m b)then we can implement the arrow operations as follows:instance Monad m) Arrow (Kleisli m) wherearr f = K (�b! return (f b))K f >>>K g = K (�b! f b >>= g)This shows that arrows do indeed generalise monads; for every monad type,there is a corresponding arrow type. (Categorically speaking, we just con-structed the Kleisli category of the monad m). Of course, we will see laterthat there are also many other, non-monadic implementations of the arrow sig-nature.4.1 Arrows and PairsHowever, even though in the case of monads the operators return and >>= areall we need to begin writing useful code, for arrows the analogous operators arrand >>> are not su�cient. Even the simple monadic addition function that wesaw earlier add :: Monad m) m Int! m Int! m Intadd x y = x >>= �u! y >>= �v ! return (u+ v)cannot yet be expressed in an arrow form. Making dependence on an inputexplicit, we see that an analogous de�nition should take the formadd :: Arrow a) (a b Int)! (a b Int)! (a b Int)add f g = : : :where we must combine f and g in sequence. The only sequencing operatoravailable is >>>, but f and g do not have the right types to be composed. Indeed,the add function needs to save the input of type b across the computation of f ,so as to be able to supply the same input to g. Likewise the result of f mustbe saved across the computation of g, so that the two results can eventually beadded together and returned. The arrow combinators so far introduced give usno way to save a value across another computation, and so we have no alternativebut to introduce another combinator.We extend the de�nition of the Arrow class as follows:12

class Arrow a wherearr :: (a! b)! a b c(>>>) :: a b c! a c d! a b d�rst :: a b c! a (b; d) (c; d)The new operator �rst converts an arrow from b to c into an arrow on pairs, thatapplies its argument to the �rst component and leaves the second componentuntouched, thus saving its value across a computation. Once again, we canimplement �rst for any Kleisli arrow:instance Monad m) Arrow (Kleisli m) where: : :�rst (K f) = K (�(b; d)! f b >>= �c! return(c; d))Given �rst, we can de�ne a combinator that applies its argument to thesecond component instead,second :: Arrow a) a b c! a (d; b) (d; c)second f = arr swap>>>�rst f >>> arr swapwhere swap (x; y) = (y; x)a combinator which processes both components of a pair,(���) :: Arrow a) a b c! a d e! a (b; d) (c; e)f ���g = �rst f >>> second gand a combinator which builds a pair from the results of two arrows,(&&&) :: Arrow a) a b c! a b d! a b (c; d)f &&& g = arr (�b! (b; b))>>>(f ��� g)With these de�nitions the add function is easily completed:add :: Arrow a) (a b Int)! (a b Int)! (a b Int)add f g = (f &&& g)>>> arr (�(u; v)! u+ v)Just as we abstracted the idea of applying a binary operator to the results oftwo monadic computations, by going on to de�ne liftM2, so we can generalisethe arrow version likewise:liftA2 :: Arrow a) (b! c! d)! a e b! a e c! a e dliftA2 op f g = (f &&& g)>>> arr (�(b; c)! b òp` c)By this point the reader with a categorical background may have formed theimpression that arrows with the extended interface implement a category withproducts. After all, we can construct arrows into a pair type using &&&, and wecan construct projection arrows as arr fst and arr snd. Beware! In fact, thereis no reason to expect Haskell's pair type to be a categorical product in the13

category of arrows, or indeed to expect any categorical product to exist. Thiswould require properties such as(f &&& g)>>> arr fst = fto hold, and in general, since our arrows usually represent computations withsome sort of e�ect, laws of this sort are simply false. In this case, the side-e�ectsof g are lost on the right hand side.The reader may also wonder why we chose to take �rst as primitive, ratherthan (say) &&& which resembles a well-known categorical operator. There aretwo main reasons for our choice.� Firstly, since in general our arrows represent computations with e�ects,evaluation order makes a di�erence. The de�nition of f &&& g above is ex-plicit about this: the e�ects of f are composed with the e�ects of g inthat order, that is evaluation is left-to-right. The de�nitions of &&& and ���above can be used as algebraic laws by the programmer, laws which cap-ture evaluation order. In contrast, had we taken &&& as primitive, then thedesigner of each arrow-based library would have had to choose either left-to-right or right-to-left evaluation, with the result that evaluation orderwould probably di�er from case to case. This would make the behaviourof arrow-based libraries less predictable, and reduce the number of usefullaws that arrow combinators satisfy.� Secondly, �rst is a simpler operator than &&&, and in general its implemen-tation is around half the size of that of the latter. In practice the imple-mentations of arrow combinators can be quite complex, and by makingthe choice we did we reduce the work required to build a new arrow-basedlibrary appreciably.4.2 Arrows and InterpretersHow awkward is it to program with arrow combinators instead of monadic ones?And how expressive are the combinators in each case | are there some kindsof program which can be expressed using return and >>=, but cannot be writtenat all in terms of arr, >>> and �rst? We can begin to answer both questionsby looking at (fragments of) an interpreter based on arrows vs. one based onmonads. If we can write an interpreter in which program fragments in a certainlanguage are interpreted as arrows, then we know that any kind of programexpressible in the interpreted language can also be expressed in terms of thearrow combinators.To begin with, we shall consider a tiny language with only variables andaddition. We represent expressions by the datatypedata Exp = Var String jAdd Exp Exp14

The value of such an expression is always an integer, but in anticipation ofmaking extensions we introduce a separate type of values anyway:data Val = Num IntWe will also require a type for environments:type Env = [(String;Val)]Now, a monadic interpreter maps expressions to computations, representedusing a monad M . To do so, we introduce an evaluation functioneval :: Exp! Env!M Valwhich we can de�ne byeval (Var s) env = return (lookup s env)eval (Add e1 e2) env = liftM2 add (eval e1 env) (eval e2 env)where add (Num u) (Num v) = Num (u+ v)An arrow interpreter, on the other hand, maps expressions to computationsrepresented as arrows. But what should the input of an arrow denoting anexpression be? By analogy with the monadic case, it is natural to take theinput of an expression to be the environment. In an arrow interpreter based onarrow type A, we therefore give eval the typeeval :: Exp! A Env ValWe can de�ne eval as follows:eval (Var s) = arr (lookup s)eval (Add e1 e2) = liftA2 add (eval e1) (eval e2)where add (Num u) (Num v) = Num (u+ v)As we can see, at least in this small example, the arrow code is by no meansmore awkward than the monadic code. Indeed, often the user of a monadiccombinator library works more with derived operators such as liftM2 than withthe operators in the monad signature themselves. Where analogous operatorscan be de�ned on arrows, arrow programs are essentially the same as monadicones.4.2.1 Interpreting ConditionalsLet us pursue the interpreter example a little further, and add a conditionalexpression to the interpreted language. We extend the expression and valuetypes as follows: data Exp = : : : j If Exp Exp Expdata Val = : : : j Bl Bool15

The monadic interpreter is easy to extend; we add a new caseeval (If e1 e2 e3) env = eval e1 env >>= �(Bl b)!if b then eval e2 env else eval e3 envBut the arrow interpreter is more di�cult. Certainly we could de�neeval (If e1 e2 e3) = (eval e1&&& eval e2&&& eval e3)>>>arr (�(Bl b; (v1; v2))! if b then v1 else v2)but this doesn't properly capture the meaning of a conditional expression: bothbranches are evaluated, and we just choose between the results. Of course theintention is to evaluate just one branch, depending on the value of the boolean.And this is the crux of the problem: the arrow combinators provide noway to choose between two arrows on the basis of an input. To do so, we areobliged to add a new combinator. But this time, we choose to de�ne a new classArrowChoice rather than enlarge the existing Arrow class further. By doing sowe retain the freedom to de�ne arrow types which do not support a dynamicchoice combinator; they will simply fail to be instances of our new class.The new combinator we want will choose between two arrows on the basisof the input, and it makes sense therefore for the input to be of Haskell's sumtype data Either a b = Left a jRight bWe will de�ne (f jjj g) to pass Left inputs to f and Right inputs to g, so the typeof jjj will be(jjj) :: ArrowChoice a) a b d! a c d! a (Either b c) dHowever, just as we chose to de�ne �rst as an arrow primitive rather than&&&, so we choose a simpler operator than jjj as the primitive method in theArrowChoice class. We de�neclass Arrow a) ArrowChoice a whereleft :: a b c! a (Either b d) (Either c d)where left f invokes f only on Left inputs, and leaves Right inputs unchanged.As usual, we check that we can implement left for Kleisli arrows:instance Monad m) ArrowChoice (Kleisli m) whereleft (K f) = K (�x! case x ofLeft b! f b >>= �c! return (Left c)Right d! return (Right d))Once we have introduced left, we can de�ne16

right f = arr mirror>>> left f >>> arr mirrorwhere mirror (Left x) = Right xmirror (Right x) = Left xf <+>g = left f >>> right gf jjj g = (f <+>g)>>> arr untagwhere untag (Left x) = xuntag (Right y) = yNow returning to our interpreter, we can at last de�ne the interpretation ofconditionals:eval (If e1 e2 e3) = (eval e1&&& arr id)>>>arr(�(Bl b; env)! if b then Left env else Right env)>>>(eval e2 jjj eval e3)This is a little more awkward than the monadic code, but would be muchsimpli�ed by introducing a combinator especially for testing predicates:test :: Arrow a) a b Bool! a b (Either b b)test f = (f &&& arr id)>>> arr (�(b; x)! if b then Left x else Right x)Such a combinator is su�ciently useful that it is reasonable to include it in thearrow library, whereupon this case of our interpreter becomes no more compli-cated than the monadic version:eval (If e1 e2 e3) = test (eval e1>>> arr(�(Bl b)! b)) (eval e2 jjj eval e3)4.2.2 Interpreting �-CalculusUsing the combinators we have now introduced, we could go on to write an arrowinterpreter for a complete �rst-order functional language. But can we interprethigher-order functions? Let us consider adding �-expressions and (call-by-value)application to the interpreted language. We extend the type of expressions asfollows: data Exp = : : : j Lam String Exp j App Exp ExpBefore we can extend the type Val, we must decide how to represent functionvalues. Since calling a function may have an e�ect, we cannot interpret functionsas values of type Val ! Val. In the monadic interpreter, we can use functionswhose result is a computation,data Val = : : : j Fun (Val!M Val)while in the arrow interpreter, we naturally represent functions by arrows:17

data Val = : : : j Fun (A Val Val)The monadic eval function is easily extended to handle the new cases:eval (Lam x e) env = return (Fun (�v ! eval e ((x; v) : env)))eval (App e1 e2) env = eval e1 env >>= �f ! eval e2 env >>= �v ! f vBut the arrow version proves more di�cult. Interpreting �-expressions is un-problematic,eval (Lam x e) = arr (�env! Fun (arr (�v ! (x; v) : env)>>> eval e))but application is much harder. If we try to de�neeval (App e1 e2) = ((eval e1>>> arr (�(Fun f)! f))&&& eval e2)>>> appfor some suitable de�nition of app, then we �nd that app must invoke an arrowwhich it receives as an input, and there is no way to do so using the combinatorsso far introduced. There is nothing for it but to introduce another new class:class Arrow a) ArrowApply a whereapp :: a (a b c; b) cwhereupon the de�nition of eval above works. So, given an implementation ofapp, we can write an interpreter for the �-calculus, and so we can also expressother arrow programs in a higher-order style. Once more, it is easy to implementapp for Kleisli arrows:instance Monad m) ArrowApply (Kleisli m) whereapp = K (�(K f; x)! f x)We have now seen that, given a monad m, we can de�ne a correspondingarrow type Kleisli m which moreover supports all the other combinators we haveintroduced so far. Conversely, it turns out that, given an arrow type a whichalso supports app, we can de�ne a corresponding monad type ArrowMonad a.The de�nition is simplynewtype ArrowApply a) ArrowMonad a b =M (a Void b)where Void is Haskell's one-point type, whose only element is unde�ned. Thatis, a `monadic' computation based on a is simply an arrow which ignores itsinput. We can now de�ne the monad operations on ArrowMonad a:instance ArrowApply a) Monad (ArrowMonad a) wherereturn x =M (arr (�z ! x))M m >>= f =M (m>>>arr (�x! let M h = f x in (h; unde�ned))>>>app) 18

We need app in order to invoke the arrow that the second argument of >>=produces.One conclusion we can draw from this is that arrow types which support appare just as expressive as monads. In principle one might eliminate the conceptof a monad from Haskell altogether, and replace it with arrows supporting app.But another conclusion to draw is that arrows supporting app are really of littleinterest to us here. Our motivation, after all, is to �nd a generic interface forcombinator libraries which cannot be based on a monad. But clearly, any librarywhich supports an arrow type with app could equally well be given a monadicinterface. In the rest of the paper, therefore, we will be most interested in arrowtypes which cannot be made instances of ArrowApply.5 Swierstra and Duponcheel's Parsers as ArrowsNow that we have introduced a number of arrow classes, let us return to Swier-stra and Duponcheel's parsers. Recall that we de�ned their parser type asdata StaticParser s = SP Bool [s]newtype DynamicParser s a = DP ([s]! (a; [s]))data Parser s a = P (StaticParser s) (DynamicParser s a)We were unable to make Parser into a monad, but can we make it into an arrowtype?To do so, we will need to add an extra type parameter, since arrow typestake two parameters, whereas monad types take only one. Our intention is thatthe static properties of a parser should not depend on parse-time inputs, so letus change only the type of the dynamic parsing function:newtype DynamicParser s a b = DP ((a; [s])! (b; [s]))data Parser s a b = P (StaticParser s) (DynamicParser s a b)Implementing the arrow combinators for this type is now straightforward:instance Arrow (Parser s) wherearr f = P (SP True []) (DP (�(b; s)! (f b; s)))P (SP empty1 starters1) (DP p1)>>>P (SP empty2 starters2) (DP p2) =P (SP (empty1 ^ empty2)(starters1 ùnion` if empty1 then starters2 else []))(DP (p2 � p1))�rst (P sp (DP p)) =P sp (�((b; d); s)! let (c; s0) = p (b; s) in ((c; d); s0))19

It is easy to modify the de�nitions from section 3 of symbol, the failureoperator zero, and the choice combinator ++, to handle the arrows' input appro-priately. Of course, since zero and ++ are overloaded names for monad operators,then we cannot use the same names for the corresponding operators on arrows.We therefore introduce two further arrow classes,class Arrow a) ArrowZero a wherezeroArrow :: a b cclass ArrowZero a) ArrowPlus a where(+++) :: a b c! a b c! a b cand declare Parser s to be an instance of these classes instead. Having doneso, we can go on to de�ne all the operators in the interface that Swierstraand Duponcheel use, in terms of the arrow operations already introduced. Forexample, their sequencing operator is de�nable by(<�>) :: Parser s a (b! c)! Parser s a b! Parser s a c(<�>) = liftA2 (�fx! fx)So the user of an arrow-based parsing library can use it in exactly the same wayas Swierstra and Duponcheel's original library, but in addition can combineparsers with generic arrow code.What, then, of the other arrow classes, ArrowChoice and ArrowApply? Amoment's thought shows that parsers cannot support these signatures. Thechoice operator f jjj g is supposed to make a dynamic choice between two arrowson the basis of the input, which implies that the possible starting symbols off jjj g would depend on the arrow's input. But we have deliberately designed theParser type so that the value of the input cannot a�ect the static component. Itfollows that jjj is unimplementable. A similar argument shows that app is alsounimplementable (indeed, any arrow type which supports app can also supportchoice; to see this, give a de�nition of left in terms of app). Luckily this does notmatter: it is rare that we want to write a parser which decides on the grammarto accept on the basis of previously parsed values.What we see here is that the arrow interface lets the programmer make �nerdistinctions than the monad interface does; we can distinguish between types ofcomputations that permit dynamic choices and calls of dynamic functions, andtypes of computations that do not. Swierstra and Duponcheel parsers do not. Incontrast, once we declare a type to be a monad, we open the possibility of doingeverything with it. And this is why the monadic interface is too restrictive.6 Stream Processors: Processes as ArrowsWe have already seen that any monad gives rise to a corresponding arrow type ina natural way, and that Swierstra and Duponcheel's parsers (or more generally,20

combinators which collect static information about computations) can also berepresented as arrows. In this section we will show that yet another `non-monadic' notion of computation, namely that of a process, �ts naturally intothe arrow framework.We concern ourselves for the time being with processes that have one inputchannel and one output channel. Such processes can be modelled in a purelyfunctional language by stream processors. A stream processor maps a streamof input messages into a stream of output messages, but is represented by anabstract data type. Let SP a b be the type of stream processors with inputs oftype a and outputs of type b. Stream processors are then constructed using theoperators put :: b! SP a b! SP a bwhich constructs a stream processor which outputs the b and then behaves likethe second argument, andget :: (a! SP a b)! SP a bwhich constructs a stream processor which waits for an input, passes it to itsfunction argument, and then behaves like the result. For simplicity we shall onlyconsider non-terminating (recursively de�ned) stream processors; otherwise wewould add another operator to construct a stream processor which halts.Stream processors can be represented in several di�erent ways, but quite agood choice is as a datatype with put and get as constructors:data SP a b = Put b (SP a b) jGet (a! SP a b)put = Putget = GetNow we can write single processes using put and get, but to put processes to-gether we need further combinators.The arrow combinators turn out to represent very natural operations onprocesses! For readability we present them separately rather than as one largeinstance de�nition. The arr operator builds a stateless process that just appliesa given function to its inputs to produce its outputs.arr f = Get (�x! Put (f x) (arr f))The >>> operator connects two processes in series:sp1>>>Put c sp2 = Put c (sp1>>> sp2)Put b sp1>>>Get f = sp1>>>f bGet f1>>>Get f2 = Get (�a! f1 a>>>Get f2)Notice that we de�ne process composition lazily: the composition blocks waitingfor an input only if both its constituent processes do.21

Finally the �rst operator builds a process that feeds the �rst components ofits inputs through its argument process, while the second components bypassthe argument process and are recombined with its outputs. But what if theargument process does not produce one output per input? Our solution is tobu�er the unconsumed inputs until corresponding outputs are produced. Thefunction bypass takes as an additional argument the queue of second componentswaiting to bypass f :�rst f = bypass [] fbypass ds (Get f) = Get (�(b; d)! bypass (ds++[d]) (f b))bypass (d : ds) (Put c sp) = Put (c; d) (bypass ds sp)bypass [] (Put c sp) = Get (�(b; d)! Put (c; d) (bypass [] sp))With this de�nition, f &&& g combines f and g in parallel, synchronising theiroutput streams to produce a stream of pairs (and also synchronising their jointoutput with the input stream).We can now use generic arrow combinators to write down stream processors.For example, the following stream processor outputs Fibonacci numbers:�bs = put 0 �bs0�bs0 = put 1 (liftA2 (+) �bs �bs0)Stream processors also support a natural notion of failure: a failing processsimply never produces more output. We can therefore de�ne a zeroArrow asinstance ArrowZero SP wherezeroArrow = Get (�x! zeroArrow)We de�ne p+++ q to run p and q in parallel, merging their outputs.instance ArrowPlus SP wherePut b sp1+++ sp2 = Put b (sp1+++ sp2)sp1+++Put b sp2 = Put b (sp1+++ sp2)Get f1+++Get f2 = Get (�a! f1 a+++ f2 a)We take care to de�ne parallel composition lazily also, so that p+++ q blockswaiting for input only if both p and q do.These de�nitions satisfy the lawszeroArrow+++ q = qp+++ zeroArrow = p(p+++ q)+++ r = p+++(q+++ r)which is a strong indication that they are reasonable.Stream processors can also support dynamic choice. The stream processorleft sp simply passes messages tagged Left through sp, while others are passedon directly. 22

instance ArrowChoice SP whereleft (Put c sp) = Put (Left c) (left sp)left (Get f) = Get (�z ! case z ofLeft a ! left (f a)Right b ! Put (Right b) (left (Get f)))With this de�nition, then f jjj g can be regarded as yet another kind of parallelcomposition, which routes inputs tagged Left to f and inputs tagged Right tog. In fact, although stream processors have only one input and one outputchannel, we can model processes with many of each by multiplexing severalchannels onto one. For example, we can regard a channel carrying messagesof type Either a b as a representation for two channels, one carrying as andthe other carrying bs. With this viewpoint, f jjj g combines f and g in parallelto yield a stream processor with two input channels (multiplexed onto one),and merges the output channels onto one. Should we wish to combine f andg without merging their outputs, we can instead use f <+>g. We can copy aninput channel to two output channels using arr Left+++ arr Right, and so we cande�ne a parallel combination of f and g with two output channels, but whichcopies one input channel to both processes byf j&j g = (arr Left+++ arr Right)>>>(f <+>g)We can write a stream processor with two input channels and one output,that just copies the �rst input channel and discards the second, or vice versa,as justLeft = arr id jjj zeroArrowjustRight = zeroArrow jjj arr idNot surprisingly, combining two processes and then discarding the output chan-nel from one of them is equivalent to the other:(f j&j g)>>> justLeft = f(f j&j g)>>> justRight = gBut these properties have a categorical interpretation: they tell us that theEither type is a weak categorical product in the category of stream processors!(Only weak, because there is more than one way to de�ne j&j so that theseequations hold; our de�nition favours g over f in case both produce outputssimultaneously). In a deep sense, then, the Either type behaves more like aproduct than the pair type does, when we work with stream processors. Andindeed, a channel carrying a sum type corresponds much more closely to a pairof channels than does a channel carrying pairs.23

The only arrow class we have not yet shown how to implement is ArrowApply.But it turns out that there is no sensible de�nition ofapp :: SP (SP a b; a) bSince app would receive a new stream processor to invoke with every input, thereis no real sense in which the stream processors it is passed would receive a streamof inputs; we could supply them with only one input each. This would reallybe very unnatural. Since stream processors do not support a natural de�nitionof app, they cannot either be �tted into the monadic framework. They thusgive us our second example of a useful kind of computation which cannot berepresented as a monad.However, recalling that Either may play the rôle of a product type for streamprocessors, we might instead of app consider looking for a function of typedyn :: SP (Either (SP a b) a) bThere is actually a very natural de�nition with this type: the `dynamic streamprocessor' dyn receives stream processors on its �rst input channel, and thenpasses inputs from its second input channel through the stream processor re-ceived, until it receives another stream processor to replace the �rst. We imple-ment it as dyn = dynloop zeroArrowwhere dynloop (Put b sp) = Put b (dynloop sp)dynloop (Get f) = Get (�z !case z ofRight a ! dynloop (f a)Left sp ! dynloop sp)Stream processors are not just amusing toys: they are at the heart of thefudgets combinator library for programming graphical user interfaces [CH93].A fudget from a to b is like a stream processor with two extra hidden commu-nication channels, to and from the window manager. A fudget can thereforeexchange high-level messages with other fudgets, but can also manage a partof the screen. Thus a fudget has both an appearance and a behaviour, whichmakes them useful for structuring complex user interfaces.The fudget type F a b is actually implemented as a stream processor inwhich the high and low level communication channels are multiplexed onto one,in just the way we described. Since fudgets are just stream processors, they canalso be declared to be arrows, supporting the same operations. Interestingly,almost all the operations we discussed in this section do indeed appear in thefudgets library | even dyn | although of course, they appear with di�erentnames, and not as instances of a general framework.24

7 Functors: New Arrows from OldOne of the attractive features of monads is that they can be designed system-atically, using so-called monad transformers [LHJ95]. A monad transformer isa monad parameterised on another monad, such that computations over theparameter monad can be `lifted' to computations over the new one.For example, the state monad of section 2.2 can be generalised to a monadtransformer: newtype StateMonadT s m a = SM (s! m (a; s))In general the monad operators on the new type must be de�ned in terms ofthe monad operators on the parameter monad, as in this case:instance Monad m) Monad (StateMonadT s m) wherereturn a = SM (�s! return (a; s))x >>= f = SM (�s! let SM x0 = x inx0 s >>= �(a; s0)!let SM f 0 = f a inf 0 s0)Lifting of computations is de�ned by passing the state through unchanged:liftState :: Monad m) m a! StateMonadT s m aliftState x = SM (�s! x >>= �a! return (a; s))Finally, the new monad supports fetch and store operations, just like the originalstate monad: fetch :: Monad m) StateMonad s m sfetch = SM (�s! return (s; s))store :: Monad m) s! StateMonad s m ()store x = SM (�s! return ((); x))The new monad thus supports all the computations of the parameter monad(by lifting), and in addition manages a state. By composing monad transform-ers together, one can build up a monad providing any desired combination offeatures. For example, if we want a monad which manages a state and handlesfailures, we can use the type StateMonadT s Maybe.In this section we show that arrows have the same property: we can de�ne`arrow transformers' which map simpler arrow types to more complex ones.The most important monad transformers have arrow transformer counterparts,and we will describe those for handling failures, state, and continuations. Anarrow transformer is, by analogy with a monad transformer, just an arrow typeparameterised on another arrow type, such that arrows of the second type canbe mapped into arrows of the �rst. But in fact, this corresponds closely to the25

standard categorical notion of a functor, and so from now on we shall use theword functor instead of arrow transformer.We note brie
y that the concepts of monad transformers and functors canbe formalised as classes, thus overloading the lifting operations, but that thisrequires a much more powerful class system than Haskell currently supports.We therefore refrain from doing so.7.1 The Maybe FunctorAny arrow type can be lifted to an arrow type supporting failures by the functornewtype MaybeFunctor a b c = MF (a b (Maybe c))That is, we use arrows whose result can indicate failure. We can lift arrows tothis type usingliftMaybe :: Arrow a) a b c! MaybeFunctor a b cliftMaybe f = MF (f >>> arr Just)The arrow operations need to handle failures, which means they need to makedynamic decisions. We therefore must require that the parameter arrow typesupports choice:instance ArrowChoice a) Arrow (MaybeFunctor a) wherearr f = liftMaybe (arr f)MF f >>>MF g = MF (f >>>arr (�z ! case z ofJust c ! Left cNothing ! Right Nothing)>>>(g jjj arr id))�rst (MF f) =MF (�rst f >>>arr (�(c0; d)! case c0 ofJust c ! Just (c; d)Nothing ! Nothing))Arrows formed by MaybeFunctor support failure and failure handling, ofcourse:
26

instance ArrowChoice a) ArrowZero (MaybeFunctor a) wherezeroArrow =MF (arr (�z ! Nothing))instance ArrowChoice a) ArrowPlus (MaybeFunctor a) whereMF f +++MF g = MF ((f &&& arr id)>>>arr (�(c0; b)! case c0 ofJust c ! Left c0Nothing ! Right b)>>>(arr id jjj g))and they also, not surprisingly, support choice:instance ArrowChoice a) ArrowChoice (MaybeFunctor a) whereMF f jjjMF g = MF (f jjj g)Finally, if the underlying arrows support application, then so do the arrowsproduced by MaybeFunctor:instance (ArrowChoice a;ArrowApply a)) ArrowApply (MaybeFunctor a) whereapp =MF (arr (�(MF f; b)! (f; b))>>> app)7.2 The State FunctorAny arrow type can be lifted to an arrow type supporting state passing by thefunctor newtype StateFunctor s a b c = SF (a (b; s) (c; s))We can lift arrows to this type usingliftState :: Arrow a) a b c! StateFunctor s a b cliftState f = SF (�rst f)The arrow operations just pass the state along as one would expect:instance Arrow a) Arrow (StateFunctor s a) wherearr f = liftState (arr f)SF f >>>SF g = SF (f >>>g)�rst (SF f) = SF (arr (�((b; d); s) ! ((b; s); d))>>>�rst f >>>arr (�((c; s); d) ! ((c; d); s)))Of course, the arrows produced by the StateFunctor support fetch and storeoperations: 27

fetch :: Arrow a) StateFunctor s a b sfetch = SF (arr (�(b; s)! (s; s)))store :: Arrow a) StateFunctor s a s ()store = SF (arr (�(x; s) ! ((); x)))Stateful arrows inherit the ability to support dynamic choice, failure, andfailure handling from the parameter arrow:instance ArrowChoice a) ArrowChoice (StateFunctor s a) whereleft (SF f) = SF (arr (�(z; s)! case z ofLeft b! Left (b; s)Right c! Right (c; s))>>>((f >>>�rst (arr Left)) jjj�rst (arr Right)))instance ArrowZero a) ArrowZero (StateFunctor s a) wherezeroArrow = SF zeroArrowinstance ArrowPlus a) ArrowPlus (StateFunctor s a) whereSF f +++SF g = SF (f +++ g)Finally, if the underlying arrow type supports application, then so do statefularrows based on it:instance ArrowApply a) ArrowApply (StateFunctor s a) whereapp = SF (arr (�((SF f; b); s)! (f; (b; s)))>>> app)The state functor we have de�ned is of course closely related to the statemonad transformer, but the advantage of de�ning functors on arrows, ratherthan transformers on monads, is that we can apply them to arrow types thatdo not correspond to any monad. As an example, the reader is invited to workout the behaviour of arrows of type StateFunctor s SP, derived by adding statepassing to stream processors.7.3 The CPS FunctorA third well-known monad transformer adds continuation passing to any monad.In the monadic world, we can de�nenewtype CPS ans m a = CPS ((a! m ans)! m ans)so that a computation is represented by a function from a continuation forits result (a monadic function into an answer type) to the computation of theanswer. In the world of arrows, we can represent a continuation by an arrow,rather than a function, and a continuation-passing arrow from b to c as a functionfrom the continuation of the result to the continuation of the argument:newtype CPSFunctor ans a b c = CPS ((a c ans)! (a b ans))28

Lifting an arrow to the CPS type is straightforward:liftCPS :: Arrow a) a b c! CPSFunctor ans a b cliftCPS f = CPS (�k ! f >>>k)But now, in order to de�ne the basic arrow operations on CPS arrows, we �ndwe already need to use application at the underlying arrow type!instance ArrowApply a) Arrow (CPSFunctor ans a) wherearr f = liftCPS (arr f)CPS f >>>CPS g = CPS (�k ! f (g k))�rst (CPS f) =CPS (�k ! arr (�(b; d)! (f (arr (�c! (c; d))>>>k); b))>>> app)To de�ne �rst (CPS f) we must invoke f with a continuation which recombinesits result with the second component of the argument. This we can do, but onlyin the scope of an arr (�(b; d) ! : : :) which binds a name to that second com-ponent. We can only construct the arrow representing f 's continuation withinanother arrow, and so we can only contruct the continuation of f 's argumentwithin an arrow, which forces us to use app to invoke it. In a way, since con-tinuation passing is the epitomy of higher-order programming, this is not reallysurprising.CPS arrows inherit the ability to support failures and failure handling fromthe underlying arrow type, and can of course support dynamic choice and ap-plication. We will not give the de�nition here, however. What we will do isshow how to de�ne a jump operator, which invokes a continuation supplied asits input jump :: ArrowApply a) CPSFunctor ans a (a c ans; c) zjump = CPS (�k ! app)and a combinator callcc, which passes the current continuation to its argumentarrow:callcc :: ArrowApply a)(a c ans! CPSFunctor ans a b c)! CPSFunctor ans a b ccallcc f = CPS (�k ! let CPS g = f k in g k)As we have seen, continuation passing arrows always support application,and must be based on an underlying arrow type which also supports application.Thus both the argument and the resulting arrow types correspond to monads.Our CPS functor is therefore no more general than the CPS monad transformer,but nonetheless, what we have shown is that we can work entirely with arrowseven if we want to use continuation passing style.
29

8 Arrow LawsUp to this point we have ignored the matter of laws. In fact the presentationof monads in section 2 was a little oversimpli�ed: an implementation of returnand >>= constitutes a monad only if the so-called monad laws are satis�ed:return x >>= f = f xm >>= return = m(m >>= f) >>= g = m >>= (�x! f x >>= g)These laws state in essense that sequential composition is associative, and returnis its unit, although they are complicated slightly by the need to pass valuesfrom one computation to the next. The programmer relies implicitly on themonad laws every time he or she uses a monad based library without worryingabout how to bracket sequential compositions.We will place similar requirements on the implementations of the arrowcombinators. But since there are many more arrow combinators than monadicones, we will require a larger collection of laws. All of the laws that we state inthis section are satis�ed by Kleisli arrows.We can simplify the statements of the laws a little by noting that the ordinaryfunction type can be declared to be an arrow:instance Arrow (!) wherearr f = ff >>>g = g � f�rst f = �(b; c)! (f b; c)instance ArrowChoice (!) whereleft f (Left b) = Left (f b)left f (Right d) = Right dinstance ArrowApply (!) whereapp = �(f; x) ! f xOf course, we will require composition to be associative, and moreover to bepreserved by arr: (f >>>g)>>>h = f >>>(g >>>h)arr (f >>>g) = arr f >>> arr gWe will require an extensionality principle for arrows, that arrows which `behavethe same' for all inputs really are equal. We can formulate this as a law asfollows: arr h>>>f = arr h>>>gh is onto � =) f = g30

Dually f >>> arr h = g >>> arr hh is one-to-one � =) f = gIt follows that arr id>>>f = f = f >>> arr id(by composing on each side with arr id, since id is both one-to-one and onto).Categorically speaking, we now know that arrows form a category, and that arris a functor from the category of Haskell functions to the category of arrows.These laws correspond in some sense to the monad laws, but now we mustgo on to state the laws that the other arrow combinators are required to satisfy.Let us call an arrow pure if it is equal to arr f for some f ; a pure arrow `hasno side-e�ects'. We shall require that all combinators behave for pure arrowsas they do for functions; that is:�rst (arr f) = arr (�rst f)left (arr f) = arr (left f)Furthermore we require that our combinators preserve composition:�rst (f >>>g) = �rst f >>>�rst gleft (f >>>g) = left f >>> left gSimilar properties for second and right follow as easy consequences.Notice, though, that it does not follow that(f ���g)>>>(h ��� k) = (f >>>h) ���(g >>>k)since the order of g and h di�ers on the two sides. This is another reason tofavour �rst and left as primitives over their more usual binary counterparts: thelaws they must satisfy become much simpler to state.We formalise the property that �rst f depends only on �rst components ofpairs as follows: �rst f >>> arr fst = arr fst>>>fbut it is not in general true that�rst f >>> arr snd = arr sndsince, on the right hand side, the side-e�ects of f are lost. Instead we formalisethe intuition that the second component of a pair is una�ected by �rst f as alaw that allows a function of that second component to be moved across theuse of �rst. We have to require that the function be pure, to avoid potentiallychanging the order in which side-e�ects occur. Thus the law becomes�rst f >>> second (arr g) = second (arr g)>>>�rst f31

Once again, the dual statement, in which �rst and second are interchanged,follows as an easy corollary.We note in passing that many categorical properties of products fail in thepresence of side e�ects. For example, the reader might expect thatf >>>(g&&&h) = (f >>>h)&&&(f >>>h)but this is not true (unless f is pure) because the side-e�ects of f are duplicatedon the right.The laws for �rst serve as models for the laws for left; we require thatarr Left>>> left f = f >>> arr Leftright (arr g)>>> left f = left f >>> right (arr g)Note here also that we cannot change the order of left f and right g unlesswe know that one of f or g is pure, because we might change the order ofside-e�ects.For arrows supporting application, we require �rstly that `currying' and thenapplying the identity arrow is equivalent to the identity (on pairs):�rst (arr (�x ! arr (�y ! (x; y))))>>> app = arr idSecondly, we require a kind of parametricity property for app, which permitsoperations to be moved in or out of the applied arrow:�rst (arr (g >>>))>>> app = second g >>> app�rst (arr (>>>h))>>> app = app>>>hFrom these laws we can prove an analogue of �-conversion, that applying aconstant arrow using app is equivalent to the arrow itself:arr (�x! (f; x))>>> app = fMoreover, currying and then applying any arrow is equivalent to the arrow:�rst (arr (�x! arr (�y ! (x; y))>>>f))>>> app = fFinally, we can prove that the monad laws hold for the ArrowMonad de�ned insection 4.2.2.For the remaining arrow classes, ArrowZero and ArrowPlus, we just requirethat +++ is associative, and zeroArrow is its unit. Stronger conditions, such asfor example zeroArrow>>>f = zeroArrowwould be overly restrictive: this property fails for stream processors, for exam-ple, since f may very well produce outputs independently of its input.32

In general, there is something of a con
ict between the desire on the onehand to state many laws, thus making it possible to prove strong propertiesgenerically, for every kind of arrow, and the wish on the other hand to leave openthe possibility of very many di�erent implementations of the arrow signature.We believe that the laws we have stated in this section are a rather minimal set,which every reasonable arrow type should satisfy.9 Active Web Pages: CGI Programs as ArrowsSo for in this paper we have shown how the arrow interface can generalise avariety of existing combinator libraries. In this section we shall discuss a librarywe are currently developing, which was inspired by the concept of arrows.The application that this library addresses is that of constructing activeweb pages, that is, pages that may appear di�erently each time they are visited.Active web pages are represented by programs, which may run either in theclient browser (applets) or on the web server. Quite di�erent technologies areused in each case; we concern ourselves here with programs which run on a webserver. Such programs can query a database held on the server, allow clients toupload new data, and so on. Even rather simple programs can be very useful:for example, those which enable students to book meetings with a teacher, orresearchers to submit articles to conferences.Active web pages of this sort are implemented by so-called CGI programsstored on the server. When a client accesses the URL of the program, thenit is run on the server, and the output from the program (usually HTML) issent back to the client browser. There are a couple of di�erent mechanisms forsending data from the client to the CGI program; the one we will consider sendsan encoding of the �elds of an HTML form to the web server, along with therequest to run the program. CGI stands for Common Gateway Interface, theprotocol governing the form in which data is sent to and fro between the clientand the server.Unfortunately, this mechanism is awkward to use in practice. Normally, theimplementor of a CGI program wishes to lead the remote client through a seriesof interactions, for example �rst asking a student to identify him or herself,then o�ering a choice of meeting times, then con�rming that a time has beenbooked. But interactions with the client can only take place in between runsof CGI programs. To ask the client a question, a CGI program must outputthe question as an HTML form, and terminate. When the client answers thequestion by �lling in and submitting the form, then in general a di�erent CGIprogram is run to accept and process the answer. This leads to poor modularity,because the format of the form (�eld names, etc) must be known both to theprogram which creates it, and to the program which interprets its contents. Buta more severe problem is that the state of the CGI program is lost across theinteraction. 33

It is therefore necessary to save the state of the CGI program explicitly acrosseach interaction. This cannot be done on the server! It is by no means certainthat the client ever will submit a reply, so that if the state were saved on theserver then it might remain there for ever, waiting for a reply that never came.On the other hand, the client might submit a reply, then use the `Back' buttonin the browser, and reply to the same question again! If second and subsequentreplies are to be handled properly, then the state cannot be discarded even oncea reply has been received.The solution is to store the state of the CGI program on the client, alongwith the question. When the client submits an answer, then the state is returnedalong with it, permitting the CGI program to pick up from the same point thatit left o�. One can think of this state as a kind of continuation: when a CGIprogram wishes to ask the client something, it captures its current continuationand sends it along with the question to the client, and when the client repliesthen the continuation is returned to the server, and can be invoked to handlethe reply. HTML provides a mechanism for handling such data: an HTML formcan contain `hidden �elds' whose contents are returned unchanged to the serverwhen the form is �lled in and submitted. Unfortunately, though, HTML �eldscannot contain function values, and so we must �nd a di�erent way to representcontinuations if we are to use this idea.The combinator library I am developing takes care of suspension of com-putations, saving of state, and restart from the same point. It lets the CGIprogrammer view interaction with the client as a procedure call; there is anarrow ask :: CGI String Stringwhich maps a question to the client's answer. Thus programs which conduct aseries of interactions can be implemented very simply. For example, consider aprogram which asks the clientWhat is your question?expecting to recieve a reply such asHow old are you?and then asks the client the same question, taking the client's answer, and then�nally sending the client a result such asThe answer to \How old are you?" is 40.Such a program can be implemented by the arrowarr (�z ! \What is your question?")>>> ask>>>(arr id&&& ask)>>>arr (�(q; a)! \The answer to n\"++q++\n" is "++a)34

Why choose the arrow interface rather than the monad interface for thisproblem? The key observation guiding the choice was that the combinators needto save the entire state of the program at an ask operation, which is di�cultbecause a part of the program state may be held in free variables. We need onlybe concerned here with variables bound to the results of computations, since itis only these that may have a di�erent value the next time the program is run.The monadic interface permits such variables to scope over computations, andin particular over ask operations, which means that their values must be part ofthe saved state. But the arrow interface does not permit this: the only way tobind a variable to the result of a computation is with the arr combinator, butthen the scope of the variable cannot extend over an ask operation.How, then, can CGI arrows be represented? When such an arrow is invoked,it may either terminate normally, producing a result, or it may suspend at anask operation. On suspension, an arrow must produce a state to save, and aquestion to ask. A CGI arrow can also be entered in two di�erent ways: it mayeither be entered normally, with an argument, or it may be resumed from anask. In the latter case we must supply a state to resume from, and the answerto the question. A natural representation for CGI arrows might therefore benewtype CGI b c = CGI (Either b (State;String)! Either c (State;String))However, in general a CGI program may have side-e�ects on the server, whichthis type does not allow for. So we shall instead represent CGI arrows as arrowsbetween these two types, which in practice will be arrows which can performI/O. We shall parameterise our de�nitions on the underlying arrow type, andso de�ne a CGI functor:newtype CGIFunctor a b c =CGI (a (Either b (State;String)) (Either c (State;String)))Now we can de�netype CGI b c = CGIFunctor (Kleisli IO) b cWith this de�nition, the ask operation is easily de�ned: it suspends whenentered normally, and delivers the answer as its result when it is resumed. Nostate is needed to resume the ask operator itself, so we assume that the Statetype includes a constructor Empty:data State = Empty j : : :We de�ne ask as follows:ask :: ArrowChoice a) CGIFunctor a String Stringask = CGI (arr (�q ! Right (Empty; q)) jjj arr (�(Empty; a)! Left a))35

The �rst alternative here handles a normal entry, and suspends to ask thequestion q, while the second alternative handles a resumption, and delivers theanswer a as the arrow's result.The arr operator is also easily de�ned: a pure arrow can never suspend,and therefore can never be resumed either, so we need consider only the Leftsummands here. arr :: Arrow a) (b! c)! CGIFunctor a b carr f = CGI (arr (�(Left b)! Left (f b)))It is when we de�ne arrow composition that we �rst need to make use of thestate. A composition of arrows may suspend either in the �rst arrow, or in thesecond, and the state that we save must record which case applied. Similarly,when we resume a composition of arrows, then we need to know which arrow toresume. We shall therefore extend the State type to record this information:data State = Empty j InLeft State j InRight State j : : :The de�nition of composition then becomes(>>>) :: ArrowChoice a)CGIFunctor a b c! CGIFunctor a c d! CGIFunctor a b dCGI f >>>CGI g = CGI ((arr Left>>> enterf) jjj((arr (�(s; a)!case s ofInLeft s0 ! Left (Right (s0; a))InRight s0 ! Right (Right (s0; a))))>>>(enterf jjj enterg)))where enterf = f >>>((arr Left>>> enterg) jjj(arr (�(s; q)! Right (InLeft s; q))))enterg = g >>>(arr Left jjj arr (�(s; q) ! Right (InRight s; q)))The �rst case in >>> handles initial entry to the composition, and just makes aninitial entry to f . The second case handles resumption: it tests to see which off and g should be resumed, and sends a resumption state to the appropriateone. Arrow enterf invokes f , and if f terminates normally, makes an initialentry to g. If f suspends, on the other hand, then enterf records that thesuspension occurred in the left operand of >>>. Arrow enterg similarly recordsthat a suspension in g occurred in the right operand of >>>. Thus we alwaysrecord in which arrow a suspension occurred, and on resumption we return tothe same point.When we de�ne the �rst combinator, we need to use the state in a di�erentway. There is no need to record where a suspension occurred: when �rst fsuspends, it must be in the arrow f . However, since �rst f must preservethe second component of its input unchanged, then when we resume after asuspension, we need to know what the value of this second component was. We36

therefore have to save it in the state. One di�culty is that the values to be savedcan have many di�erent types, at di�erent occurrences of �rst. We shall convertthem all to the same type before saving them; since states must eventually beembedded in HTML �elds, it is convenient to convert them to strings, usingHaskell's standard function show. When we resume from such a state, we canconvert the saved value back to its original type using the standard functionread, which satis�es read � show = id.We shall therefore extend the State type again:data State = Empty j InLeft State j InRight State j Save String Stateand de�ne �rst as�rst :: (Arrow a;Show d;Read d))CGIFunctor a b c! CGIFunctor a (b; d) (c; d)�rst (CGI f) =CGI (arr (�x ! case x ofLeft (b; d)! (Left b; d))Right (Save v s; a)! (Right (s; a); read v)))>>>�rst f >>>arr (�(x; d) ! case x ofLeft c ! Left (c; d)Right (s; q) ! Right (Save (show d) s; q)))On an initial entry to �rst f , we just pass the �rst component of the input tof ; on a resumption we reconstruct the saved second component from the state.On �nal termination of f , we just pair its output with the second component d,but on suspension we save d in the state. Notice that the type d must supportread and show operations, which not all types do. This is recorded in the typesignature of �rst, which requires d to be an instance of the classes Read andShow.CGI arrows also permit dynamic choices. Implementing left turns out to beparticularly simple, because left f can suspend only if the input was of the formLeft b; we therefore don't need to record any additional information in the stateto allow us to decide whether or not to invoke f on a resumption.
37

left :: ArrowChoice a)CGIFunctor a b c! CGIFunctor a (Either b d) (Either c d)left (CGI f) =CGI (arr (�x ! case x ofLeft (Left b) ! Left (Left b)Left (Right d) ! Right dRight (s; a) ! Left (Right (s; a)))>>>left f >>>arr (�x ! case x ofLeft (Left c) ! Left (Left c)Left (Right (s; q)) ! Right (s; q)Right d ! Left (Right d)))On an initial entry to left f , we pass inputs tagged Left to f , and those taggedRight are passed through unchanged. On a resumption of left f , we just resumef . When f terminates normally, or the input was tagged Right, then left fterminates. When f suspends then so does left f , in the same state.It is also possible to give an appealing interpretation of zeroArrow and +++for CGI arrows: f +++ g creates two threads which run in parallel, and zeroArrowterminates a thread. We use this mechanism to enable a CGI arrow to askseveral questions in one interaction (if both f and g suspend). We omit thedetails here.It is not possible, however, to implement app. The di�culty here is thatthe types that CGI arrows operate over must support read and show, so thatintermediate values can be saved on the client. CGI arrows themselves areimplemented in terms of functions, and so cannot be read and written. Thereforea CGI arrow cannot take another CGI arrow in its input, and app cannot bede�ned.The library I am developing is based on the ideas in this section, but isnecessarily a little more complicated. It is an oversimpli�cation to consider thecommunication with the client to consist of a single question and answer, oreven multiple questions and answers. In reality the client is sent an HTMLpage containing one or more HTML forms, each of which may contain many�elds. The full-scale library includes combinators for generating various HTMLelements, and for putting parts of forms together into larger forms. There isalso a `top-level' functionserveCGI :: CGI a b! IO ()which takes an arrow and `runs it', taking care of encoding states in hidden�elds, decoding the data returning from the client, and so on.One major irritation which we have so far glossed over is that CGI arrowscannot actually be made an instance of the Arrow class de�ned in this paper!The problem lies in the types of the arrow methods given in this section. Lookback at the type of �rst: it requires that the type of the value to be saved be an38

instance of the Read and Show classes. The type given for �rst in the de�nitionof the Arrow class makes no such restriction. Therefore this implementation of�rst cannot be declared to be an instance of the generic one | it is less general.We might attempt to solve this problem by moving the restriction to adi�erent place. Let us de�ne the CGI arrow type so that it is only applicableto types in these classes:newtype (Read b;Show b;Read c;Show c))CGIFunctor a b c =CGI (a (Either b (State;String)) (Either c (State;String)))In categorical terms, we de�ne a new category whose arrows are CGI arrows,and whose objects are a subset of the Haskell types, namely those supportingread and show. Now, since the implementation of �rst given in this sectionconstructs a CGI arrow from (b; d) to (c; d), then it is evident that the type dmust support read and show, and there is no need to explicitly require that inthe type of �rst. As a result, it should now be possible to declare CGI arrowsan instance of the generic arrow class.Unfortunately, this does not work. The Haskell type system requires therestrictions on d in the type of �rst, even if we declare that they are satis�ed forall CGI arrows. Haskell does not infer from the occurrence of a type CGI b c,that b and c must be instances of Read and Show | and indeed, this is noteven true, because of the way that type restrictions on datatype de�nitions areinterpreted. I consider this to be a defect of the Haskell type system, whichhopefully can be corrected in a future version of the language.In the absence of such a correction, we are obliged to make a copy of thearrow library, and all the generic code that uses it, with the only di�erence thatthe type assigned to �rst in the Arrow class is the one required for the CGIinstance. By doing so we can still bene�t from using a standard arrow interfaceto the CGI library | we can still combine CGI arrows with other arrow code| but any program which uses the CGI library must import a special de�nitionof the arrow class, which restricts all arrows in the entire program to work overtypes supporting read and show. This is frustrating indeed.Finally, we note with hindsight that a monadic interface could be used in-stead here. We could de�ne a monad whose computations can be suspendedand resumed, in an analogous way to CGI arrows. However, the de�nition ofm >>= f would need to record not only which of m or f suspended, but also thevalue that m delivered, if suspension occurred in f . Concretely, the `InRight'form of State would need to carry an extra component, namely the value of m.Thus the problem of recording free variables is solved: every free variable ofan ask operation which is bound to the result of a computation, is bound by anoccurrence of >>=, and we can make that occurrence of >>= responsible for savingthe value.However, even if a monadic interface would be possible, we believe it wouldmake for less e�cient CGI programs. The monadic library we suggest would39

need to save every previously delivered value, whereas the arrow library savesonly those which are still needed. Thus the monadic library would tend to sendmore information to and from the client. Of course, such a monadic librarywould also fall foul of the typing problem just discussed, so that a CGI monadcould not be declared to be an instance of Haskell's Monad class. Consequentlyit could not be used together with standard monadic functions, or Haskell'smonadic do syntax.10 ConclusionsThis paper proposes the replacement of monads as a structuring tool for com-binator libraries, by arrows. We have seen that any monadic library can begiven an arrow interface instead (via Kleisli arrows), and so the arrow inter-face is strictly more general. We have seen that many monadic programmingtechniques have analogues in the world of arrows: monad transformers becomefunctors, standard monad constructions for exceptions, state passing and con-tinuations carry over to arrows, even generic monadic functions often have anarrow analogue. But basing an interface on arrows instead of monads permits�ner distinctions to be made: we can distinguish between kinds of computa-tion which permit dynamic choices to be made, or dynamic computations to beinvoked, and those which do not.The advantage of the arrow interface is that it has a wider class of implemen-tations than the monad interface does; it is more general. Thus some librariesbased on abstract data types which simply are not monads, can nonetheless begiven an arrow interface. Such libraries include those for processes modelledby stream processors or fudgets, libraries for e�cient parsing, or in general anylibrary which computes static properties of computations in advance of runningthem. So this category includes a number of libraries which are highly useful inpractice. By giving them an arrow interface, we make it possible to use themtogether with generic arrow code.Moreover, some existing monadic libraries might bene�t by replacing themonads with arrows. One motivation might be in order to introduce the samekind of optimisation which Swierstra and Duponcheel used. We believe thismay be the case for Conal Elliot's animation library [EH97], and for Bjesse etals library for hardware design [BCSS98].In short, we believe that arrows o�er a useful extension to the generality ofgeneric library interfaces.References[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:Hardware Design in Haskell. In International Conference on Functional40

Programming, Baltimore, 1998. ACM.[CH93] M. Carlsson and T. Hallgren. Fudgets - A Graphical User Interface ina Lazy Functional Language. In FPCA '93 - Conference on FunctionalProgramming Languages and Computer Architecture, pages 321{330.ACM Press, June 1993.[EH97] Conal Elliott and Paul Hudak. Functional Reactive Animation. In In-ternational Conference on Functional Programming. ACM SIGPLAN,1997.[Hud92] Paul Hudak et al. Report on the Programming Language Haskell: ANon-Strict, Purely Functional Language, March 1992. Version 1.2. Alsoin Sigplan Notices, May 1992.[KW92] David King and Phil Wadler. Combining Monads. In Glasgow Work-shop on Functional Programming, Ayr, July 1992. Springer-Verlag.[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers andmodular interpreters. In Conference Record of POPL'95: 22nd ACMSIGPLAN-SIGACT Symposium on Principles of Programming Lan-guages, pages 333{343, San Francisco, California, January 1995.[PH96] J. Peterson and K. Hammond. The Haskell 1.3 Report. TechnicalReport YALEU/DCS/RR-1106, Yale University, 1996.[SD96] S.D. Swierstra and Luc Duponcheel. Deterministic, error-correctingcombinator parsers. In John Launchbury, Erik Meijer, and Tim Sheard,editors, Advanced Functional Programming, volume 1129 of LNCS-Tutorial, pages 184{207. Springer-Verlag, 1996.[Wad85] P. Wadler. How to Replace Failure by a List of Successes. In Pro-ceedings 1985 Conference on Functional Programming Languages andComputer Architecture, pages 113{128, Nancy, France, 1985.[Wad90] P. Wadler. Comprehending Monads. In Proceedings of the 1990 ACMConference on Lisp and Functional Programming, pages 61{77, Nice,France, 1990.[Wad92] Phil Wadler. The essence of functional programming. In Proceedings1992 Symposium on Principles of Programming Languages, pages 1{14,Albuquerque, New Mexico, 1992.[Wad95] Philip Wadler. Monads for functional programming. In J. Jeuring andE. Meijer, editors, Advanced Functional Programming, number 925 inLNCS, pages 24{52. Springer Verlag, May 1995.41

