
FudgetsA Graphical User Interface in a Lazy Functional LanguageMagnus Carlsson, Thomas HallgrenChalmers University of Technologyfmagnus,hallgreng@cs.chalmers.seAbstractThis paper describes an implementation of a small window-based graphical user interface toolkit for XWindows writtenin the lazy functional language LML. By using this toolkit,a Haskell or LML programmer can create a user interfacewith menus, buttons and other graphical interface objects,without conforming to more or less imperative programmingparadigms imposed if she were to use a traditional (impera-tive) toolkit. Instead, the power of the abstraction methodsprovided by Haskell or LML are used.The main abstraction we use is the fudget. Fudgets arecombined in a hierarchical structure, and they interact bymessage passing. The current implementation is based on asequential evaluator, but by using non-determinism and ora-cles, we suggest how the fudgets can evaluate in parallel. Webelieve that the toolkit can be extended to a full-featheredand practically useful high level graphical toolkit.1 IntroductionNot so long ago, the dominating way for a user to inter-act with a computer was by typing text on a keyboard andreading text of a screen. Today, this traditional text orienteduser interface is being replaced by graphical user interfaces,where the user interacts with the computer by manipulat-ing graphical objects on a screen with a pointing device,typically a mouse.Graphic user interfaces are more
exible and thereforemore complex to program. To deal with this extra complex-ity more levels of abstractions are used. As in all program-ming it is important to �nd the right abstractions. This hasled to the development of Graphical User Interface (GUI)toolkits to simplify the application programmer's job.A major advantage of functional programming languagesover traditional imperative languages is the abstractionmethods they provide: higher order functions, polymor-phism and algebraic data types. This suggests that func-tional languages may be better equipped to handle thecomplexity of graphical user interfaces than traditional lan-guages. But functional languages are often criticized forhaving poor I/O facilities, making it hard to write interac-tive programs, in particular programs with fancy graphical

user interfaces.The major goals with our work are to show:� that the abstraction methods and I/O facilities pro-vided by functional languages are adequate for imple-menting programs with graphical user interfaces, and� that implementations of lazy functional languages aree�cient enough to deal with the potentially large
owof data and swift responses required by a graphicaluser interface.So, rather than de�ning an interface between an existingGUI toolkit (such as the Macintosh Toolbox or Motif) anda functional language, we choose to start from a lower leveland implement a GUI toolkit in the functional language it-self. This approach allows us to use the power of the abstrac-tion methods provided by the functional language, insteadof relying on abstractions designed for imperative languages.It also puts a larger part of burden of handling a GUI onthe functional program, thus requiring the implementationto be more e�cient to obtain good performance.The functional languages we work with are Lazy ML [3]and Haskell [8] and the window system is X Windows [17].The interface to X Windows goes through Xlib [11]. Exceptfor one example in C, all code in the paper is given in Haskell.The main abstraction we use is the fudget, the functionalcorrespondence to what is called the widget in some tradi-tional GUI toolkits. We have developed a library of fudgetsimplementing common user interface components, like but-tons, menus, scroll bars, etc. Complex user interfaces arebuilt up by combining fudgets in a hierachical structure,where the fudgets interact by message passing. There is noglobal state: state information, when needed, is encapsu-lated inside the fudgets, hidden from the outside world.The remainder of this paper is organized as follows: westart with a brief introduction to the X Windows systemand look at a small example program written in C using theMotif toolkit (Section 2). We then describe our approachto GUI program structuring in a lazy functional languageand introduce the fudget type (Section 3) and present thesame example now implemented using fudgets. In Section 4we present a mechanism for automatic and dynamic layoutof fudgets. Section 5 contains a larger fudget programmingexample. We present some details on how fudgets are repre-sented (Section 6). With the chosen representation, we caneasily add mechanisms for parallelism and nondeterminism,as is illustrated in Section 7. We take a quick look at the im-plementation of the interface to Xlib in Section 8. Related

work is presented in Section 9 and conclusions are given inSection 10.2 The X Windows systemIn the X Windows system [17], you write a client program,which interacts with the user by communicating with aserver process (the X server) which handles the lowest levelinterface with the hardware (display, keyboard, mouse). Theclient sends a stream of commands (for creating windows,drawing lines, writing text etc.) to the server and receivesa stream of events (which tell the client about keystrokes,mouse button presses, motion of the mouse, etc.) from theserver. Most commands and events are related to a spe-ci�c window. Each window has its own coordinate systemused for the drawing commands. All drawing commands arerelative to a window and drawing is usually clipped by thewindow boundaries. This way, client programs only haveto bother about their own windows and are usually com-pletely unaware of the existence of windows controlled byother clients. Therefore, a user can handle many indepen-dent activities simultaneously, possibly on di�erent comput-ers in a network.The windows have a hierarchical organization with win-dows in other windows. Each window has a speci�c positionin a parent window. Most events are sent to the windowunder the pointer, which the user controls with the mouse.For each window, the programmer can decide how sensitiveit should be to various events. For example, to implement agraphical button, you could create a window that is sensi-tive only to events telling when the pointer enters or leavesthe window and when a speci�c mouse button is pressed orreleased in it. Most user interface objects (like scroll bars,pulldown menus and buttons), often called widgets (windowgadgets), are built up by a number of windows in this way.The root of this window tree is a window that simplycovers the whole screen, and is usually �lled with some back-ground color or pattern. The children of the root windoware usually so called shell windows. They have a title barand it is usually possible to move them around and resizethem by using the mouse. So the shell windows are the most\window like" windows, from the user's point of view.In addition to the window tree, sibling windows are orga-nized in a stacking order, telling which window should hidewhich when they overlap. When a hidden part of a win-dow becomes visible (e.g. because the user rearranged thewindows), the X server sends an Expose event to the client,telling it that the newly exposed part of the window needsto be redrawn.12.1 Imperative toolkit programmingBefore introducing our functional toolkit solution, let uswarm up by looking at a simple imperative program thatuses a conventional toolkit. We will discover that programcontrol is somewhat di�erent from what we �nd in programswith simple text interfaces.In traditional imperative X Window based toolkits, youcreate a tree of widgets and connect callback routines tothem. They are called callback routines because there are1Unless you are using backing store, where bitmaps for the hiddenparts of a window are stored o� screen. This method is patented byAT&T, but allegedly, Richard Stallman implemented it way back butdidn't bother to write about it.

usually no direct calls to them in your code, but the toolkitwill call them in response to various events. We will namethe code you write the application.After creating the widget tree and specifying the callbackroutines, you enter the main event loop, where events aredispatched to the widgets, which in turn respond by callingthe callback routines. In short, we could say that the toolkitconverts low level events, such as \Mouse button is pressedat (x; y)", into high level events, such as calling the OK but-ton callback routine. See Figure 1. The callback routines, inturn, can react with high level commands, such as \Pop upthe Save dialog box"), by calling routines in the toolkit. Thetoolkit then emits a number of low level commands to carryout the high level command. Typically, there is also a num-ber of low level events that the toolkit could handle moreor less autonomously, such as expose events and requestsfor resizing windows. The toolkit somewhat resembles lowersystems in the brain, controlling various functions of thebody without bothering the cerebral cortex (the applicationcode).So the picture is that the toolkit is in control, handlingthe low level events and maintaining the visual state of theinterface. Sometimes, application speci�c computation isnecessary, and then the toolkit calls application code.
Application

Low level

commands

Low level

events

Toolkit

commands

events

High level

High level

Client

Figure 1: The structure of the client. The purpose of thetoolkit is to take care of handling all low level commandsand events. The toolkit can also emit high level events asa response on low level events. The high level events arehandled by the application code, which in turn can emithigh level commands.2.2 The Motif counter exampleLet us look at a small example with a window containinga button and a number display. Whenever the button ispressed, the number is increased by one. The example iswritten in C using the popular toolkit Motif [25]:2static int count = 0;static Widget display;static void SetDisplay(Widget display, int i){ char s[10];Arg wargs[1];sprintf(s, "%d", i);2The example has been somewhat stripped; the callback argumentsand arguments for determining various widget attributes are omitted,and so is the conversion between C-strings and Motif strings.

XtSetArg(wargs[0], XmNlabelString, s);XtSetValues(display, wargs, 1);}static void increment(){ count++;SetDisplay(display, count);}void main(){ Widget top, row, button;top = XtInitialize();row = XtCreateManagedWidget("row",xmRowColumnWidgetClass, top);display = XtCreateManagedWidget("display",xmLabelWidgetClass, row);button = XtCreateManagedWidget("button",xmPushButtonWidgetClass, row);SetDisplay(display, count);XtAddCallback(button, (XtCallbackProc)increment,(XtPointer)display);XtRealizeWidget(top);XtMainLoop();} The program starts with creating a shell widgetcalled top, which will be the root of the widget tree.The rest of the tree is created with repeated calls ofXtCreateManagedWidget, where the arguments specify whatkind of widget to create, and where to put it in the tree. Thewidgets are:� row, a layout widget which put all its children in a rowor in a column.� display, which shows a string which will be the count.� button, a button that the user can press. Wheneverthis happens, an associated callback routine is called.When the widget tree is created, the display is reset toshow zero, and the C-function increment is registered asa callback routine for the button widget. increment incre-ments the counter and updates the display widget.3 Our approachIf we want to apply the callback style directly in a pure lazyfunctional toolkit, we must �nd out what it means to \call aroutine". A straightforward solution would be to stick to theimperative style by using variations of the state monad [24].This suggests a simple way of using an existing imperativetoolkit in a functional program. It is likely though, thatthis will imply a imperative style throughout the program,so why then use a functional language at all?Instead, we chose to use a stream processing style, withfunctions operating on streams of events and commands.As suggested by Figure 1, we can distinguish four types ofstreams, high level command and event streams, and lowlevel ditos. Our toolkit consists of stream functions con-suming high and low level events, and producing high andlow level commands. They correspond to the widgets intraditional toolkits, and we call them fudgets (FunctionalWidgets). When developing an application, you (the appli-cation programmer) write stream functions that handle highlevel messages and somehow connect them with the fudgetsfrom the toolkit.

3.1 The fudget typeLet us take a closer look at the types of the four di�er-ent streams. The low level command type has constructorscorresponding closely to the drawing commands that youcould send to the X server. Similarly, the low level eventtype mostly consists of constructors for the various eventsthat the server could produce. These types are �xed and issomething that the application programmer normally neednot worry about.The type of high level events and commands (which wewill simply call input and output) cannot so easily be de-termined once and for all. For example, consider a fudgettextF for displaying and entering a line of text. We wantthe input type to be String, telling that the fudget acceptsnew strings to show. Suppose we want the fudget to outputthe text value whenever the return key is pressed, this isindicated by having the output type String too. Similarly,imagine a push button fudget buttonF which could outputa unit value (of type () in Haskell), whenever it is clicked,and could input a boolean value True or False to make itsensitive or insensitive to mouse-clicks.It seems reasonable to have the type of the high levelevent and commands as parameters in the fudget type. Weintroduce the notation F � � (1)for the type of fudgets with input type � and output type �.Thus, textF will have type F String String, and buttonFwill have the type F Bool ().We will visualize the fudget as a circle with four pins, seeFigure 2. The information
ows through the fudget fromright to left. The high level messages go through the upperpins, the low level events and commands through the lowerpins. You can think of the lower pins as being connecteddirectly to the fudget's window.
β α

Window

FudgetFigure 2: The fudget F � �.3.2 Putting fudgets togetherComplex graphic interfaces are constructed from simplerbuilding blocks, so we need a set of combinators for this. Asimple combinator would take two fudgets as arguments andput them \in parallel' into one composite fudget, and we willcall this combinator >+<. It routes the low level commandsand events to and from each fudget independently, so theyexist side by side without having to bother about each other,each one controlling its own window. Since the compositefudget consists of two subfudgets, we need a mechanism fordistinguishing the output from them, and adressing input toeach one of them. For this reason, we introduce the type ofdisjoint union, called Either in Haskell:data Either a b = Left a | Right b

Either � � will be abbreviated as �+ �. The type of >+<will then beF �1 �1 ! F �2 �2 ! F (�1 + �2) (�1 + �2)We use the constructors in Either to indicate that a highlevel message is sent to or from either the left or the rightsubfudget. Now, we can for example put together our textfudget and button fudget:textF >+< buttonF :: F (String + Bool) (String + ())Say that we want to enable the button, this is done by send-ing Right True to the composed fudget.3.2.1 Fudget compositionThe pairing combinator allows us to put any number of fud-gets together into one single fudget, but we need a means bywhich they can communicate high level information to oneother. Normally in functional programming, this is donewith an operator for function composition with type(� !
) ! (� ! �) ! � !
With this in mind, we introduce a combinator for fudgetcomposition, which we will name >==<, with typeF �
 ! F � � ! F �
Just as >+<, >==< will put two fudgets together and let themcontrol their windows independently, and in addition, theoutput from the right fudget is connected to the input ofthe left fudget. Consider the somewhat silly fudgettextF >==< textFIf text is entered in the right text fudget, it will be echoedin the left one. See also Figure 3.
Ct E t Ct E t

αβγ

f2f1

Window 1 Window 2Figure 3: The fudget f1 >==< f23.2.2 Abstract fudgetsWith the right set of primitive fudgets (such as textF andbuttonF), we can now imagine rather complex interfaces be-ing built. But we must also have the ability to combine thisinterface with the application speci�c code, correspondingto the right box in Figure 1. We will do this by an operatorthat lets the programmer turn an arbitrary stream functioninto a fudget. The operator is called absF and has typeSP � � ! F � �(SP is an abbreviation for Stream Processor). We also needto tools for writing stream functions. This is done in a con-tinuation style with the functionsgetSP :: (a -> SP a b) -> SP a b

putSP :: [a] -> (SP b a) -> SP b agetSP (\a -> sf) is a stream function that will waitfor a message and then become the stream function sf.putSP l sp will output all the messages in the list l andthen become the stream function sf.A useful function derived from these is mapSP (cf. thestandard map function on lists) of type(� ! �) ! SP � �3.2.3 The counter example with fudgetsWe can now construct a fudget with the same behavior as thesimple counter program in Section 2.2. The fudget consistsof a button, an abstract fudget that does the counting, andan integer display fudget intDispF of type F Int �3 (SeeFigure 4). Figure 4: A small counterWe use fudget composition to connect the button withthe counter and the counter with the display:intDispF >==< (absF counter) >==< buttonFHere, counter has type SP () Int and can be de�ned as4counter = count 0where count n = getSP $ \ _ ->putSP [n+1] $count (n+1)The three fudgets can be seen in Figure 5.
n.c.

counter buttondisplay

n.c.n.c.

()Int n.c.Figure 5: Whenever the button fudget is pressed, it sends a() to counter, which counts the number of clicks and sendsthis count to the display. Connectors marked n.c. are notconnected.3.2.4 LoopsIf fudgets need to exchange information both back and forth,they can be connected with the operator loopLeft of typeF (�+ �) (�+
) ! F �
Whenever the enclosed fudget outputs an � message, it isfed back into the fudget.As an example, consider the de�nitions3The type variable on the output indicates that the fudget neveroutputs anything.4$ is function application in Haskell

stripEither :: Either a a -> astripEither Left a = a| Right a = aloopAll :: F a b -> F c dloopAll f = loopLeft (absF (mapSP Left) >==< f >==<(absF (mapSP StripEither)))Now, withloopAll (textF >==< textF)we get two text fudgets, and if text is entered in one ofthem, it is echoed in the other5 (See also Section 3.2.1).3.2.5 Some derived combinatorsThe following combinators and operators are not necessarysince they can be derived from the ones introduces sofar,but they are quite useful and some of them are actuallyimplemented more e�ciently than the following de�nitionssuggest:(>^^=<) :: SP b c -> F a b -> F a cp >^^=< f = absF p >==< f(>=^^<) :: F b c -> SP a b -> F a cf >=^^< p = f >==< absF p(>^=<) :: (b -> c) -> F a b -> F a cp >^=< f = mapSP p >^^=< f(>=^<) :: F b c -> (a -> b) -> F a cf >=^< p = f >=^^< mapSP pWith these, loopAll in the previous section could be writ-tenloopAll f = loopLeft (Left >^=< f >=^< stripEither)3.2.6 The list combinatorSometimes you want to create a list of similar interface ob-jects (examples are button panels, menu choices or �le lists).For this purpose, we introduce the list fudget combinatorlistF :: [(�;F � �)] ! F (�; �) (�; �). It combines a list oftagged fudgets of some type into one fudget, where the highlevel in- and outgoing messages are tagged to determine des-tination or source, respectively.3.3 A Haskell program with fudgetsWe have learned how to compose a fudget from the primitivefudgets and application speci�c abstract fudgets. We willnow put this fudget into a shell fudget (corresponding tothe top shell widget in the Motif example) and present aHaskell program with this fudget.The shell fudget wraps a shell window with a title bararound an enclosed fudget, and it is called shellF :: String! F � � ! F � �. As the type suggests, the high levelmessages are simply passed through the shell fudget.Before presenting the Haskell program, we will brie
ydescribe how input/output is done in Haskell. The in-put/output model is stream based, and a Haskell programmust contain a function main of type Dialogue, where5For this to work, textF must only output the content when it isaltered by the user, not when a new content is input from the otherfudget. Otherwise, we get an in�nite loop.

type Dialogue = [Response] ->[Request]A Haskell program is a stream function that outputs re-quests (such as \Write this string to that �le") to the outerworld, and consumes responses (i.e. \Ok" or \That �le iswrite protected!") from it.6So we introduce a function fudlogue (fudget dialogue),with type F � � ! Dialogue. fudlogue will turn the lowlevel commands from the fudget into suitable requests, andextract low level events from the response stream to feedback into the fudget.Now, let us look at the counter example as a Haskellprogram:module Main(main) whereimport Fudgetsmain = fudlogue (shellF "Counter" counter_f)startstate = 0counter_f = intDispF startstate >==< absF counter>==< buttonF "Inc"counter = count startstatewhere count n = getSP $ \ _ ->putSP [n+1] $count (n+1)Here, we use more practical versions of the intDispF andbuttonF fudgets, with additional parameters for the initialstate and the button name, respectively.4 Dynamic layoutThe simplest approach to layout (from the toolkit imple-mentor's point of view) is to let each fudget take an extraargument de�ning the window geometry. (The geometry de-termines the height and width of a window, and where it isplaced in its parent window.) The programmer can thencompletely control where to put the fudgets. This is not thelevel one usually wants to work on, however.7We implemented a simple layout scheme to make appli-cation programming easier, by inventing a layout-consciouscousin of >+<, called >+#<:>+#< :: F a b -> (Distance, Orientation, F c d)-> F (a + b) (c + d)Here, Distance is the distance between the fudgets in pix-els, and the Orientation argument speci�es how the �rstfudget should be placed relative to the second:data Orientation = LAbove | LBelow | LRightOf | LLeftOfThe composition combinator >==#< is de�ned similarly.4.1 Drawbacks with this layout mechanismThe layout mechanism described has two obvious draw-backs. Firstly, the layout of fudgets is connected to thestructure of the program. There is no easy way of sayingthat two fudgets should be placed together if they are not6There are other means of doing input/output in Haskell, see [8].7Parts of the problem could be solved by using a graphical layoutprogram which lets you place and resize fudgets with the mouse. Codewith explicit window geometry information will be generated by thelayout program. A prototype layout program has been developed forthe Fudgets library [1].

combined in the program. Secondly, the program is some-what cluttered with a lot of layout arguments which possiblyhide the fudget structure.A solution is to wrap a layout �lter around the combinedfudgets, where the programmer speci�es to the layout �lterhow the subfudgets should be placed. This allows a more\global" placement.5 A larger example: LifeLet us look at a somewhat more complicated example, a sim-ulator for Conway's game of Life. The user will see two shellwindows, a board window with cells and a button panel, con-trolled by the fudgets board and panel (See Figure 6). Theuser can click anywhere on the board to insert or removecells or resize the board. The size of the cells is chosen froma radio group in the panel, which also has a toggle buttonfor starting and stopping the simulation, and a quit button.In the following sections, we will take a closer look at boardand panel.When the simulation is started, new generations are com-puted and shown at regular intervals. A generation can berepresented as a list of the cells which are alive, togetherwith the bounds of the board:type Cell = Booltype Pos = (Int,Int)type Bounds = Postype Generation = [Pos]5.1 The Life fudgetThe fudget board should visualize a generation. It should beeasy to update either the whole generation or any individualcell in the shown generation. It must also permit the cellsize to be changed. We capture this with the typestype CellSize = Intdata LifeCmds = NewCell (Pos, Cell) | NewGen Generation| NewCellSize CellSizeWe want board to report when the user clicks at a certainposition with the mouse, and when the window is resized.So the high level events are de�ned asdata LifeEvts = MouseClick Pos | NewBounds Boundsand board will get the type F LifeCmds LifeEvts.5.2 The Panel fudgetThe type of panel will be F (Bool + CellSize) (() +CellSize). When the toggle button is on, the panel willoutput a () as a tick at regular intervals8 , and if the userchooses a new cell size, the size is output. The input typeof panel indicates that it can be used to control the settingsof the toggle and the radio group, but we will not use thispossibility.5.3 The control stream functionThe stream function control will receive the ticks frompanel. On each tick, it will compute a new generation andoutput this. Clearly, the output from controlmust be con-nected to the input of board. But controlmust know whenthe user has clicked in the board window, so the output fromboard must go to control as well. We need to use the loopcombinator to connect them (See also Figure 6):8This is implemented by having the runtime system sending specialtimer alarm events to the Haskell program

control :: SP (LifeEvts + (() + CellSize)) LifeCmdstoplevel = loopLeft ((Left >^=< board) >=^^< control)>==< panel
panelboard

control
map

Left

Figure 6:We will not go into more detail about the internal struc-ture of board, control or panel, but simply leave this ex-ample now.5.4 Dynamic creation of fudgetsOur examples so far have had a static fudget structure, asindicated by the �gures. Now, we will introduce a higherorder combinator that can be used to create fudgets onthe
y: dynListF :: F (�; (F � �) + �) (�; �). A messageto dynListF is tagged and can be either a new fudget F � �or a message � to an already created fudget. (Cf. the de-scription of listF.) The tag is used to associate fudgetswith their messages.Suppose we have a fudget noteF which is a smallnotepad. Now, we want to have a control panel that willlet us create notepads and other handy little tools at will.Since we might want an arbitrary number of notepads, theyhave to be created dynamically. A simple control panel withjust one button for creating notepads would bemodule Main(main) whereimport Fudgetsimport NoteF(noteF)main = fudlogue (shellF "Applications" newNoteFButton)newFudget :: F (F a b) (Int,b)newFudget = dynListF >=^^< countSP 1newNoteFButton = newFudget >==<(const noteF >^=< buttonF "New Notepad")countSP :: Int -> SP a (Int,a)countSP n =getSP $ \x->putSP [(n,x)] $countSP (n+1)6 Representation of FudgetsWriting applications using the Fudgets library will mostlyconsist of combining existing fudgets and writing abstractfudgets. So, most of the time you need not worry aboutthe details of how fudgets are represented. But when imple-menting new primitive fudgets, you need to know some ofthe details.

As we have seen (c.f. Section 3.1), fudgets are streamprocessors with two input streams and two output streams.In the current implementation fudgets are represented astype F a b = SP (TEvent + a) (TCommand + b)where TEvent and TCommand are the types representing lowlevel events and commands. The high and low level streamsare merged into single streams allowing us to use the streamprocessor type also for fudgets. Fudget combinators, like>+< and >==<, take care of the details of separately routinglow and high level messages to the appropriate places.6.1 Representation of Stream ProcessorsStreams processors can be represented in several ways. In alazy language, streams can naturally be represented as lists:type SP a b = [a] -> [[b]]This is the de�nition used in the current implementationof the Fudgets library. Notice, though, that the de�nitionis internal to the Fudgets library and not visible to ap-plication programmers. Stream processors are constructedusing operations like putSP and getSP.We also need an operation to compose stream processorsin parallel:parSP :: SP a1 b1 -> SP a2 b2 -> SP (a1+a2) (b1+b2)To make it possible to deterministically merge the outputstreams from two stream processors composed in parallelwe impose the following restriction on all stream processorssp: 8n:sp (i1:i2:::::in:?) = o1:o2:::::on:o (2)This means that there is a one-to-one correspondence be-tween elements in the input output lists. This allows theorder between the elements in the output stream of a par-allel composition parSP sp1 sp2 to be determined from theinput stream. For example, if Left x appears at some pointin the input stream, the next element in the output shouldbe Left y, where y is the next element in the output streamfrom sp1.The above restriction is also the reason why the outputstream is represented as a list of lists rather than just list.A problem with this representation of stream processorsis that a straightforward implementation of parSP, causes anasty space leak. parSP can be de�ned something likeparSP sp1 sp2 is = merge is (sp1 (onlyLeft is))(sp2 (onlyRight is))The problem is that there are two references to the inputstream is. Now, if a long initial segment of the input streamto parSP sp1 sp2 contains only elements for sp1, merge willtake elements only from the output of sp1 and thus leave thesubexpression (sp2 (onlyRight is)) unevaluated with itsreference to the beginning of the input stream. This is reallyannoying, because we know that the large fragment kept inmemory for is really is garbage, since it will be thrown awayby onlyRight as soon as we try to evaluate it!In the early days, the Fudgets library su�ered severelyfrom this space leak. A surprisingly simple method to elim-inate space leaks of this kind [20], has been successfully ap-plied to the Fudgets library.

7 Parallelism and nondeterminismMaintaining a graphical user interface is really a task that isparallel in its nature, if you regard it as simultaneously viewand update di�erent parts of the interface. This is somethingthat we would like to capture by permitting stream proces-sors to evaluate in parallel, merging their output streamsnondeterministically. One fudget could then be busy updat-ing a complicated drawing for example, while other fudgetscould respond to user actions. We will now introduce thechoose operator, which makes this possible.7.1 Parallel evaluation with choose and oraclesThe operator choose has been implemented for doing non-deterministic programming in LML [2]. It has the typechoose: Oracle -> a -> b -> Boolchoose o a bwill evaluate the arguments a and b to WHNFin parallel (possibly using time slicing), and return True if aterminates �rst, otherwise False. The oracle o is consultedto determine this, and if the same oracle is used once again inanother choose expression, that will immediately evaluateto the same boolean value. Hence, referential transparencyis preserved:f (choose o a b) (choose o a b)is equivalent tolet b = choose o a b in f b bObviously, choose is not very useful when applied to onlyone oracle in a program. You need an everlasting supplyof oracles. This is provided by the value oracletree ::OracleTree wheredata OracleTree = MkOnode OracleTree Oracle OracleTreeA complication is that you have to distribute this oracletree over those parts of your program that need nondeter-ministic choice. At �rst, it seems like we are forced to addan extra oracle tree argument to all our fudgets, whether ornot they will use it. But there is a better solution, and thatis to send the oracle tree as the �rst element in the eventstream. The >+< and listF combinators take care of split-ting the tree, so that each fudget will get its own subtree.This way, deterministic fudgets need not know at all aboutthe oracles.Our streams can now be represented as lists, and tomerge two streams, we can use pmergeEither:9pmerge :: [Oracle] -> [a] -> [a] -> [a]pmerge (o:os) as bs =let (e:es,unes) = if choose o as bsthen (as,bs) else (bs,as)in e : merge os es unespmergeEither :: [Oracle] -> [a] -> [b] -> [a + b]pmergeEither os as bs =pmerge os (map Left as) (map Right bs)7.2 A more general fudget typeConsider a more general fudget type F
 � � =[E] ! � ! ([C]; �) where typically � = [�1], � = [�1] .With this type, the loop combinator from Section 3.2.4 is9The de�nition of pmerge is from [7], where it is used in implemen-tations of real-time multi-user games in LML.

not needed as a primitive to recursively connect the di�er-ent high level streams of our fudgets, instead we name thestreams directly. The pairing combinator >+< will have thetype F
 �1 �1 ! F
 �2 �2 ! F
 (�1; �2) (�1; �2). Here ishow we could de�ne the loop combinator:loopLeft :: F (a,b) (a,c)loopLeft f evs inp =let (cmds, (l,out)) = f evs (l,inp)in (cmds, out)The function pmergeEither and the oracles introduced inthe previous section can then be used to merge the high andlow level event streams if that is needed inside fudgets.More issues about fudgets and parallel evaluation can befound in [4].8 ImplementationThe Fudgets library is built on top of Xlib [11], whichcontains a number of routines for creating and managingwindows, rendering, reading events, etc. So, the implemen-tation consists of two parts: the Fudgets library itself andan interface to Xlib.The implementation (source and documentation) isavailable via anonymous ftp [5]. The Fudgets library iswritten in LML and consists of about 4000 lines of code.The Xlib interface is outlined below.8.1 Implementation of the interface to XlibThe facilities provided by XLib have been made availableto the functional programs by extending the Haskell I/Osystem [8] (which can be used also in LML programs) witha few new requests and responses:data Request =-- file system requests:| ReadFile String| WriteFile String String..-- New requests for Xlib interface| XDoCommand XWId XCommand| XGetEventsdata Response = Success| Str String| StrList [String]..-- New responses for Xlib interface| XEventList [XEvent]The type XCommand contains constructors correspondingto routines in Xlib. The type XEvent correspond to thetype XEvent de�ned in Xlib. About 40 commands and 40event types are currently supported. Apart from these twotypes, a number auxiliary types used in Xlib have been givenanalogous de�nitions in Haskell/LML.Thanks to the integration of the XLib interface with theHaskell I/O system, fudgets can output not only X com-mands, but any I/O request, and receive responses. Thus,ordinary I/O operations can be performed inside fudgets.A few lines of C code for every Xlib call and other con-structor, have been added to the run-time system to imple-ment the interface. Using the C monad [9] (not currentlysupported by the Chalmers Haskell compiler), most of thiscan be written directly in Haskell instead.

9 Related workTo our knowledge, Fudgetsis the �rst implementation of atoolkit in a lazy functional language that is not built on topof an existing toolkit.A number of interfaces for functional languages havebeen built on top of existing toolkits, for example Lazy Wafeby Sinclair [18], XView/Miranda by Singh [19] and MIRAXby Tebbs [21]. In general, these interfaces lack combinatorsuseful for structuring large applications.9.1 eXeneeXene, by Reppy and Gansner [14, 6], is a toolkit for X Win-dows and Standard ML of New Jersey. It is written on topof Concurrent ML (CML) [13], and is thus multi-threaded.eXene aims towards being a full-
edged toolkit, completelywritten in SML (including the communication with theX server).Events from the X server and control messages betweenparents and children are distributed in streams (coded asCML event values) through the window hierarchy, whereeach window has at least one thread taking care of theevents. Drawing is done in a imperative style, by callingdrawing procedures. High level events are reported eitherimperatively or by message passing: e.g., when a button ispressed, a callback routine is called, or a message is outputon a channel.9.2 InteractionsIn [22], Thompson uses interactions to do I/O:type Interaction a b = (Input,a) -> (Input,b,Output)An Interaction � � is a function that, when applied tothe input stream, will consume some input and return therest, together with some output commands. It also trans-forms some value � into a � value.10 Interactions can becomposed by the sequential composition operatorsq :: Interaction a b -> Interaction b c -> Interaction a csq i1 i2 (in,st) = (rest,st2,out1++out2)where (in1,st1,out1) = i1 (in,st)(in2,st2,out2) = i2 (in1,st1)These interactions have been used by Tebbs to imple-ment an X Window interface in Miranda on top of an im-perative toolkit written in C [21].Having polymorphic input and output, the interactionsresemble our fudgets. The di�erence is that all interactionsare serially connected, where each interaction consumes abit of event stream (input) and prepends a bit of commandstream (output), whereas the fudgets are organized in a treewith the event stream being split and distributed over it, re-sulting in a number of fudget command streams being col-lected in one single stream.Whereas the interactions and dialogues might be goodfor text-based I/O, we do not �nd them appropriate for deal-ing with the parallel nature of a GUI.9.3 Concurrent Clean input/outputConcurrent Clean is a lazy language, where parts of the pro-gram can be evaluated in parallel [10]. The type system is10The interactions are a generalization of Dwelly's Dialogue com-binators, which have the same type on the input and output values.

extended with so called unique types, which very much re-semble linear types. In [12], objects of unique types are usedto model di�erent aspects of the operating system, and func-tions for manipulating these objects can have instant realworld e�ects, since the objects are unshared. This opensthe possibility to do I/O `inside' the program. A graphi-cal user interface system has been implemented on top ofthe Macintosh toolbox as well as the Open Look toolkit forX Windows. The connection to these toolkits gives the pro-grams an imperative touch, where you have a user de�nedprogram state which is manipulated by action functions trig-gered by the user choosing menu commands, for example.10 ConclusionsWe have implemented a subset of a GUI toolkit, the Fud-gets library, which can be extended to a full-feathered andpractically useful high level graphical interface toolkit.With a small reservation concerning e�ciency, we believethat the goals stated in the introduction are met. The fudgetconcept has proved to be a useful structuring tool whendeveloping programs with GUIs, allowing large programs tobe built in a structured way. As a spino�, the fudget concepthas also been used to do standard Haskell I/O. The fudgetscan emit any kind of request, and the response will be routedback to the fudget.It should be noted, that this is still work in progress.We lack the experience of writing a really large applicationusing the Fudgets library.The e�ciency is in most cases adequate. Our test ap-plications start up in a few seconds (running on a SPARC-station IPX). Response times are short. The rendering inresponse to e.g. the user pressing a button or selecting amenu item is in general as immediate as in conventional Xprograms. Some operations are slower, e.g. adjusting thesizes and positions of all the buttons in the calculator whenthe user resizes the window. Sometimes, you notice \theembarrassing pause" caused by garbage collection.The garbage collection (GC) pause in our test applica-tion is in most cases less than 0.2s. The GC time is pro-portional to the size of live data with the copying garbagecollector we currently use, so applications dealing with largedata structures may su�er more from the GC pauses. Wehope, however, that program transformations that reducethe amount of garbage generated and/or an appropriatelytuned generational garbage collector [16] can be used to solvethis problem.10.1 Sample applicationsWe have implemented a number of small applications usingthe Fudgets library: calc: a pocket calculator providingin�nite precision rational numbers; clock: a transparentclock; graph: a program for viewing graphs of real valuedfunctions of one real variable. The program allows the userto zoom in/out, di�erentiate functions, and search for roots;life: an implementation of Conway's game of life. (See Sec-tion 5 for a more detailed description); sss: a simple spreadsheet; xlmls: a GUI to a previously written program tosearch for functions in the LML library by type [15]; xmail:a simple mail reader; guit: a graphical user interface builderfor the Fudgets library.Figure 7 shows a screen dump with most of these pro-grams, and some more.

10.2 Future workBy means of parallel evaluation and oracles, it seems like wecould come even closer of capturing the parallel nature of aGUI, and permit a more natural way of connecting streamfunctions. Therefore, a tempting experiment would be tomodify Fudgets in this direction.A source of ine�ciency in many functional programs isthe repeated destruction and reconstruction of data struc-tures. The event and command streams processed by fud-gets is a typical example of this. It would be interesting tosee to what extent automatic program transformation, likedeforestation [23], can be used to eliminate this ine�ciency.11 AcknowledgementsWe wish to thank Lennart Augustsson, for his assistance inthe extension of the run-time system to support the Xlib in-terface. Jan Sparud's �x of the space leaks suddenly madeour programs much more useful. Jan, Lennart and NiklasR�ojemo also did proof-reading and suggested various im-provements.John Launchbury pointed out that the C-monads couldbe used to implement the calls to Xlib.References[1] C. Ahlberg. GUIT, a Graphical User Interface Builder forthe Fudgets Library. In Proceedings of the Winter Meeting.Department of Computer Sciences, Chalmers, January 1993.[2] L. Augustsson. Non-deterministic Programming in a Deter-ministic Functional Language. PMG Memo 66, Departmentof Computer Sciences, Chalmers University of Technology,S{412 96 G�oteborg, 1988.[3] L. Augustsson and T. Johnsson. Lazy ML User's Man-ual. ProgrammingMethodologyGroup, Departmentof Com-puter Sciences, Chalmers, S{412 96 G�oteborg, Sweden, 1993.Distributed with the LML compiler.[4] M. Carlsson. Fudgets - Graphical User Interfaces and I/Oin Lazy Functional Languages. Licentiate Thesis, ChalmersUniversity of Technology and University of G�oteborg, Swe-den, 1993.[5] M. Carlsson and T. Hallgren. The Fudgets library.Chalmers University. Anon. FTP: ftp.cs.chalmers.se:/pub/haskell/chalmers/lml-<version>.lmlx.tar.Z,March 1993.[6] E.R. Gansner and J. Reppy. The eXene widgets manual.Cornell University. Anon. FTP: ramses.cs.cornell.edu:/pub/eXene-doc.tar.Z, June 1991.[7] T. Hallgren. Introduction to Real-time Multi-user GamesProgramming in LML. Technical Report Memo 89, Depart-ment of Computer Sciences, Chalmers, S{412 96 G�oteborg,Sweden, January 1990.[8] Paul Hudak et al. Report on the Programming LanguageHaskell: A Non-Strict, Purely Functional Language, March1992. Version 1.2. Also in Sigplan Notices, May 1992.[9] S.L. Peyton Jones and P. Wadler. Imperative functional pro-gramming. In Proceedings of the 1993 Conference on Prin-ciples of Programming Languages, 1993.[10] E.G.J.M.H. N�ocker, J.E.W. Smetsers,M.C.J.D. van Eekelen,and M.J. Plasmeyer. Concurrent clean. In Proceedings ofthe PARLE'91 Parallel Architectures and Languages Europeconference (LNCS 505), Eindhoven, June 1991.[11] A. Nye. Xlib reference manual, volume 2. O'Reilly & Asso-ciates, Inc., 1990.

Figure 7: A collage of fudget applications. All windows belong to programs developed with the Fudgets library.[12] J. von Groningen P. Achten and R. Plasmeijer. High LevelSpeci�cation of I/O in Functional Languages. In Proc. of theInternational Workshop on Functional Languages. SpringerLecture Notes in Computer Science, 1992. Anon. FTP:ftp.cs.kun.nl:/ pub/Clean/papers/CleanIOPaper.ps.Z.[13] J. Reppy. CML: A Higher-order Concurrent Language. InProceedings of the SIGPLAN'91 Conference on Program-ming Language Design and Implementation, pages 293{305,June 1991.[14] J. Reppy and E.R. Gansner. The eXene library manual.Cornell University. Anon. FTP: ramses.cs.cornell.edu:/pub/eXene-doc.tar.Z, June 1991.[15] M. Rittri. Using types as search keys in function libraries. J.of Functional Programming, 1(1):71{89, 1991. Earlier ver-sion in Func. Prog. Lang. and Comput. Arch., 4th Conf.,ACM Press 1989.[16] N. R�ojemo. Generational garbage collection is Leak-Prone.Submitted to FPCA 1993, December 1992.[17] R.W. Schei
er and J. Gettys. The X Window System. ACMTransactions on Graphics, 5(2), April 1986.[18] D.C. Sinclair. Lazy Wafe - Graphical Interfaces for Func-tional Languages. Departement of Computing Science, Uni-versity of Glasgow, 1992. Draft.
[19] S. Singh. Using XView/X11 from Miranda. In Heldalet al., editor, Glasgow Workshop on Functional Program-ming, 1991.[20] J. Sparud. Fixing Some Space Leaks without a GarbageCollector. Submitted to FPCA 1993, December 1992.[21] M. Tebbs. MIRAX - An X-window Interface for the Func-tional Programming Language Miranda. Technical report,School of Engineering and Applied Science, April 1991.[22] S. Thompson. Interactive Functional Programming. In D.A.Turner, editor, Research topics in Functional Programming.Addison-Wesley Publishing Company, 1990.[23] P. Wadler. Deforestation: Transforming programs to elimi-nate trees. In European Symposium on Programming, pages344{358, Nancy, March 1988.[24] P. Wadler. The essence of functional programming. InProceedings 1992 Symposium on principles of ProgrammingLanguages, pages 1{14, Albuquerque, New Mexico, 1992.[25] D.A. Young. The X window System : programming andApplications with Xt. OSF/Motif Edition. Prentice Hall,1990.

