
Arrows and computation

Ross Paterson

Many programs and libraries involve components that are ‘function-like’, in that

they take inputs and produce outputs, but are not simple functions from inputs

to outputs. This chapter explores the features of such ‘notions of computation’,

defining a common interface, called ‘arrows’. This allows all these notions of com-

putation to share infrastructure, such as libraries, proofs or language support.

Arrows also provide a useful discipline for structuring many programs, and allow

one to program at a greater level of generality. Monads, discussed in Chapter 11

of IFPH, serve a similar purpose, but arrows are more general. In particular, they

include notions of computation with static components, independent of the input,

as well as computations that consume multiple inputs. We also consider some use-

ful subclasses of arrows, one of which turns out to be equivalent to monads. The

others bring choice and feedback to the arrow world.

With this machinery, we can give a common structure to programs based on

different notions of computation. The generality of arrows tends to force one into

a point-free style, which is useful for proving general properties. However it is not

to everyone’s taste, and can be awkward for programming specific instances. The

solution is a point-wise notation for arrows, which is automatically translated to

the functional language Haskell. Each notion of computation thus defines a special

sublanguage of Haskell.

1 Notions of computation

We shall explore what we mean by a notion of computation using four varied

examples. As a point of comparison, we shall consider how the following operator

on functions may be generalized to the various types of ‘function-like’ components.

add :: (β → Int) → (β → Int) → (β → Int)

add f g b = f b + g b

State transformers: Applications that involve the threading of a state through a

function might have types described by

2 Arrows and computation

type State σ ι o = (σ, ι) → (σ, o)

A generalization of add to state transformers is

addST :: State σ β Int → State σ β Int → State σ β Int

addST f g (s, b) = let (s ′, x) = f (s, b)

(s ′′, y) = g (s ′, b)
in (s ′′, x + y)

which we can picture as below:

��
��

��
-

@@ - -

-
-....................

.......

.

.

.

.

.

.

.

.

.

.

. -.................................

.

.

.

.

.

.

.

.

.

.

. -........ -
β

f

+

σ σ

Int
g

Int

Int
σ

But for the dotted line, this is the same as add . The difference is that the state σ

is threaded first through f and then through g to produce the resulting state. This

is not the only choice: we could have defined addST to thread the state through g

and then through f .

Nondeterminism: Many search algorithms may be described as functions that re-

turn a list of possible answers (with the empty list indicating failure):

type NonDet ι o = ι → [o]

The generalization of add is to add each combination:

addND :: NonDet β Int → NonDet β Int → NonDet β Int

addND f g b = [x + y | x ← f b, y ← g b]

The effect under lazy evaluation is similar to backtracking. To compute the head

of the list, the function gets the first elements from f and g . To compute the next

element, it gets the next element from g if any, or otherwise the next element from

f and the first from g , and so on. As with state transformers, another version is

available: we could have gone through all the results of f first.

More sophisticated variations on this idea are discussed in Chapter ??.

Map transformers: A data parallel algorithm transforms a family of input values,

one for each place in a set σ, into a family of output values at the same places:

type MapTrans σ ι o = (σ → ι) → (σ → o)

Another interpretation takes σ as representing time, so that a function σ → α is

a time-varying value, or behaviour, and the component is a behaviour transformer.

The generalization of add to map transformers adds the functions pointwise:

addMT :: MapTrans σ β Int → MapTrans σ β Int → MapTrans σ β Int

addMT f g m s = f m s + g m s

Ross Paterson 3

If σ represents place, this corresponds to evaluating f and g at each place and

summing each pair of results. If σ represents time, this operator adds the values

of two behaviours at each point in time.

Simple automata: One way to model synchronous circuits is to use simple au-

tomata, which map an input to an output and a new version of themselves:

newtype Auto ι o = A (ι → (o, Auto ι o))

The generalization of add to automata runs the two automata in parallel, summing

each pair of results:

addAuto :: Auto β Int → Auto β Int → Auto β Int

addAuto (A f) (A g) = A (λ b → let (x , f ′) = f b

(y , g ′) = g b

in (x + y , addAuto f ′ g ′))

1.1 Categories and functors

In each of the above examples, and many more like them, there is a type A ; B

of computations taking inputs of type A and producing outputs of type B . It

is natural to ask what else these examples have in common. We shall define an

interface that is sufficiently general to encompass our examples (and many others),

but also powerful enough to program general combinators like add .

It seems reasonable to expect that we can compose two computations by con-

necting the output of the first to the input of the second, and that composition

is associative with an identity (a ‘do-nothing’ computation). This is the standard

notion of a category , with types as objects and computations as arrows (or mor-

phisms). We can represent this in Haskell with the class

class Category α where

idA :: α β β

(≫) :: α β γ → α γ δ → α β δ

Haskell does not permit infix type constructors like ;, so the arrow type construc-

tor α is placed before its two type arguments.

In a category, these operations are required to satisfy the axioms

identity idA ≫ f = f ≫ idA = f

associativity (f ≫ g) ≫ h = f ≫ (g ≫ h)

Pure functions constitute a category:

instance Category (→) where

idA = id

f ≫ g = g · f

4 Arrows and computation

A category is a very general concept, and it is perhaps no surprise that all of our

examples induce categories, as do many other things. However this interface is

much too general (or offers too little) for programming purposes. Firstly, we shall

also require a combinator to embed ordinary functions as ‘pure’ computations:

pure :: (β → γ) → α β γ

satisfying the following axioms:

functor-identity pure id = idA

functor-composition pure (g · f) = pure f ≫ pure g

Normally functional programmers use only functors, like map, from the category

of functions to itself, but pure is a functor from the category of pure functions to

the new category.

Using pure, we can lift functions like + to computations, but this is still not

enough to implement a generalization of add . So far, the results of a computation

must be fed to the immediately following computation; we have no way to save

intermediate results. We need a means to apply a computation to part of the

input, while preserving the rest. In the category of functions, this is done using

the product functor:1

(×) :: (α → α′) → (β → β′) → (α, β) → (α′, β′)

(f × g)̃ (a, b) = (f a, g b)

The operator × is a functor in two arguments, so that we have

(f · g)× (h · k) = (f × h) · (g × k)

This does not generalize directly to other notions of computation. For example, in

state transformer computations the order of g and h cannot be changed without

changing the effect of the computation. However, it suffices to assume a one-sided

product, which we shall call first . Hence instead of Category , we use the following

class:

class Arrow α where

pure :: (β → γ) → α β γ

(≫) :: α β γ → α γ δ → α β δ

first :: α β γ → α (β, δ) (γ, δ)

There is no need to assume idA, because it is uniquely defined by the functor-

identity law for pure:

idA :: Arrow α ⇒ α β β

idA = pure id

We need not assume a mirror image of first , as it may be defined as

1The tilde marks an irrefutable pattern in Haskell. It is used in this and some later definitions

to make the matching of pairs non-strict.

Ross Paterson 5

second :: Arrow α ⇒ α β γ → α (δ, β) (δ, γ)

second f = pure swap ≫ first f ≫ pure swap

where swap (̃x , y) = (y , x)

We assume that first satisfies the following axioms:

extension first (pure f) = pure (f × id)

functor first (f ≫ g) = first f ≫ first g

exchange first f ≫ pure (id × g) = pure (id × g) ≫ first f

unit first f ≫ pure fst = pure fst ≫ f

association first (first f) ≫ pure assoc = pure assoc ≫ first f

where assoc rearranges pairs:

assoc :: ((α, β), γ) → (α, (β, γ))

assoc (̃̃ (a, b), c) = (a, (b, c))

Ordinary functions are an instance of the Arrow class:

instance Arrow (→) where

pure f = f

f ≫ g = g · f

first f = f × id

Our other examples are also instances, though in some cases we must alter the

definitions slightly, because Haskell does not permit type synonyms as instances:

newtype State σ ι o = ST ((σ, ι) → (σ, o))

newtype NonDet ι o = ND (ι → [o])

newtype MapTrans σ ι o = MT ((σ → ι) → (σ → o))

Now we can define an instance for the State type. A pure state transformer leaves

the state untouched, while first routes the state through f :

instance Arrow (State σ) where

pure f = ST (id × f)

ST f ≫ ST g = ST (g · f)

first (ST f) = ST (assoc · (f × id) · unassoc)

where unassoc is the inverse of assoc:

unassoc :: (α, (β, γ)) → ((α, β), γ)

unassoc (̃a, (̃b, c)) = ((a, b), c)

A pure non-deterministic computation is a single-valued, or deterministic, compu-

tation, while composition encapsulates backtracking:

instance Arrow NonDet where

6 Arrows and computation

pure f = ND (λ b → [f b])

ND f ≫ ND g = ND (λ b → [d | c ← f b, d ← g c])

first (ND f) = ND (λ (b, d) → [(c, d) | c ← f b])

A pure map transformer applies a function to each result of the map, while first

applies a transformer to only part of a map:

instance Arrow (MapTrans σ) where

pure f = MT (f ·)

MT f ≫ MT g = MT (g · f)

first (MT f) = MT (zipMap · (f × id) · unzipMap)

where zipMap and its inverse unzipMap convert between pairs of maps and maps

yielding pairs:

zipMap :: (σ → α, σ → β) → (σ → (α, β))

zipMap h s = (fst h s, snd h s)

unzipMap :: (σ → (α, β)) → (σ → α, σ → β)

unzipMap h = (fst · h, snd · h)

The instance for automata is a bit more complicated:

instance Arrow Auto where

pure f = A (λ b → (f b, pure f))

A f ≫ A g = A (λ b → let (c, f ′) = f b

(d , g ′) = g c

in (d , f ′ ≫ g ′))

first (A f) = A (λ (b, d) → let (c, f ′) = f b

in ((c, d),first f ′))

Remember that an automaton maps an input to an output and a new version of

itself to be used on the next input. In the case of a pure automaton, the new

version is the same as the old one: the automaton is stateless, with each output a

function of the corresponding input. A pair of automata are composed by running

them side by side, with each output of the first used as an input to the second.

Now we can write some general combinators for arrows. For example, we can

define something that looks like a product:

(∗∗∗) :: Arrow α ⇒ α β γ → α β′ γ′ → α (β, β′) (γ, γ′)

f ∗∗∗ g = first f ≫ second g

Note that we have arbitrarily chosen an order for the computations f and g . For

many arrows (e.g. state transformers), the other order has a different meaning. As

a consequence, ∗∗∗ is not in general a functor.

A convenient variant duplicates the input first:

(&&&) :: Arrow α ⇒ α β γ → α β γ′ → α β (γ, γ′)

f &&& g = pure dup ≫ (f ∗∗∗ g)

Ross Paterson 7

where dup b = (b, b)

A general combinator corresponding to add is:

addA :: Arrow α ⇒ α β Int → α β Int → α β Int

addA f g = f &&& g ≫ pure (uncurry (+))

Each of the versions of add defined above may be obtained by specializing addA

with the appropriate arrow type.

Exercise 1 Write Arrow instances for the following types:

newtype Reader σ ι o = R ((σ, ι) → o)

newtype Writer ι o = W (ι → (String , o))

In the latter case, any monoid could be used in place of String . 2

Exercise 2 The following is almost an arrow type:

newtype ListMap ι o = LM ([ι] → [o])

What goes wrong? 2

Exercise 3 Define the following as an arrow type:

data Stream α = Cons α (Stream α)

newtype StreamMap ι o = SM (Stream ι → Stream o)

This enables us to mimic dataflow languages, in which an infinite list represents all

the values of a variable, or Kahn networks, in which a list represents all the values

that pass through a channel. 2

Exercise 4 Show that the following is a functor:

(⋉) :: Arrow α ⇒ α β γ → (β′ → γ′) → α (β, β′) (γ, γ′)

f ⋉ g = first f ≫ (id × g)

2

2 Special cases

We consider here a number of interfaces that are less general than arrows, but

which nevertheless offer useful additional facilities when available.

2.1 Arrows and monads

The Arrow combinators operate on computations, rather than the values that pass

through them. They are point-free, in contrast to normal functional programming,

8 Arrows and computation

where we use named values (variables) bound by λ or let. We could name inputs

to arrows in the same way if the arrow type α satisfied

currying α (β, γ) δ ∼= β → α γ δ

(This is an example of what category theorists call an adjunction.) There is a

obvious function from the left side to the right:

curryA :: Arrow α ⇒ α (β, γ) δ → β → α γ δ

curryA f b = mkPair b ≫ f

mkPair :: Arrow α ⇒ β → α γ (β, γ)

mkPair b = pure (λ c → (b, c))

But does curryA have an inverse? Such an inverse would map id :: α γ δ → α γ δ

to a combinator

class Arrow α ⇒ ArrowApply α where

app :: α (α γ δ, γ) δ

Indeed, it can be shown that a natural currying isomorphism exists if and only if

such an arrow app exists and satisfies the axioms:

composition pure ((≫ h) × id) ≫ app = app ≫ h

reduction pure (mkPair × id) ≫ app = pure id

extensionality mkPair f ≫ app = f

Pure functions are a trivial instance of this class:

instance ArrowApply (→) where

app (̃f , c) = f c

Of the other arrows we have considered, State and NonDet are instances, but

MapTrans and Auto are not. Indeed, the currying isomorphism implies

α β δ ∼= α (β, ()) δ ∼= β → α () δ

and any such arrow may be factored as β → M δ, where M is a monad. Conversely

any monad gives rise to an arrow of this form, called its Kleisli arrow, which satisfies

the currying isomorphism. Thus the ArrowApply class is merely a less convenient

version of the Monad class. It describes computations that always take a single

input. However, arrows also include computations that consume multiple input

values (like MapTrans and Auto), as well as computations that are partially static,

i.e. independent of the input. We shall see examples of both kinds in Section 4.

Exercise 5 Verify the ArrowApply axioms for pure functions. 2

Exercise 6 The following instance has the correct type:

Ross Paterson 9

instance ArrowApply Auto where

app = pure (λ (A f , x) → fst (f x))

Show that the extensionality axiom fails for this definition. 2

2.2 Conditionals

In many situations we wish to perform different computations for different inputs.

This would be trivial if we could refer to the input directly, as with monadic

computations (or, equivalently, ArrowApply). Although this is not available for

arrows in general, more arrows admit conditional computation than currying. We

begin with a Haskell sum type:

data Either α β = Left α | Right β

Just as with the product type, there is a corresponding functor:

(⊕) :: (α → α′) → (β → β′) → Either α β → Either α′ β′

(f ⊕ g) (Left a) = Left (f a)

(f ⊕ g) (Right b) = Right (g b)

By analogy with products, we postulate a one-sided sum functor on arrows:

class Arrow α ⇒ ArrowChoice α where

left :: α β γ → α (Either β δ) (Either γ δ)

As with products, the mirror image may be defined:

right :: ArrowChoice α ⇒ α β γ → α (Either δ β) (Either δ γ)

right f = pure mirror ≫ left f ≫ pure mirror

where mirror (Left x) = Right x

mirror (Right y) = Left y

The axioms for left mirror those for first :

extension left (pure f) = pure (f ⊕ id)

functor left (f ≫ g) = left f ≫ left g

exchange left f ≫ pure (id ⊕ g) = pure (id ⊕ g) ≫ left f

unit pure Left ≫ left f = f ≫ pure Left

association left (left f) ≫ pure assocsum = pure assocsum ≫ left f

for the function

assocsum :: Either (Either α β) γ → Either α (Either β γ)

assocsum (Left (Left a)) = Left a

assocsum (Left (Right b)) = Right (Left b)

assocsum (Right c) = Right (Right c)

10 Arrows and computation

In the world of pure functions, sums and products are related by the function

distr :: (Either α β, γ) → Either (α, γ) (β, γ)

distr (Left a, c) = Left (a, c)

distr (Right b, c) = Right (b, c)

We also postulate an additional axiom for arrows:

distribution first (left f) ≫ pure distr = pure distr ≫ left (first f)

We can define derived combinators corresponding to those for products:

(<+>) :: ArrowChoice α ⇒

α β γ → α β′ γ′ → α (Either β β′) (Either γ γ′)
f <+> g = left f ≫ right g

(|||) :: ArrowChoice α ⇒ α β δ → α γ δ → α (Either β γ) δ

f ||| g = f <+> g ≫ pure untag

where untag (Left x) = x

untag (Right y) = y

Naturally pure functions are an instance of ArrowChoice:

instance ArrowChoice (→) where

left f = f ⊕ id

Indeed any instance of ArrowApply , including State and NonDet , is also an instance

of ArrowChoice. More interestingly, simple automata allow choice, even though

they do not permit application:

instance ArrowChoice Auto where

left (A f) = A lf

where lf (Left b) = let (c, f ′) = f b

in (Left c, left f ′)
lf (Right d) = (Right d , left (A f))

Only inputs marked Left are run through the automaton, while others are copied

to the output.

There is no ArrowChoice instance for map transformers.

Exercise 7 Define ArrowChoice instances for NonDet , State and the StreamMap

type from Exercise 3. 2

Exercise 8 Show that the equation

(f ||| g) ≫ h = (f ≫ h) ||| (g ≫ h)

fails for the Auto and StreamMap arrows. 2

Ross Paterson 11

Exercise 9 Given the following definition, which adds string-valued exceptions to

an arrow:

newtype Except α β γ = E (α β (Either String γ))

Define the following instance

instance ArrowChoice α ⇒ Arrow (Except α)

2

Exercise 10 Prove the functor axiom for first in the arrow defined in the previous

exercise. This requires the distributivity axiom. 2

2.3 Feedback

Since arrows are Haskell values, they may be recursively defined in the usual way.

Sometimes we want a different form of recursion, where values input to an arrow

are defined in terms of its outputs, as in the following diagram:

-

�

γβ

f

δ

For ordinary functions, we can define a function category theorists call a trace:

trace :: ((β, δ) → (γ, δ)) → β → γ

trace f b = let (c, d) = f (b, d) in c

Here the second component of the output of f is fed back as the second component

of its input. Some arrows permit a generalization of trace, characterized by the

class

class Arrow α ⇒ ArrowLoop α where

loop :: α (β, δ) (γ, δ) → α β γ

The intention is that while the value is fed back, any effect of the computation

occurs once only, and this is reflected by the axioms of loop:

extension loop (pure f) = pure (trace f)

left tightening loop (first h ≫ f) = h ≫ loop f

right tightening loop (f ≫ first h) = loop f ≫ h

sliding loop (f ≫ pure (id × k)) = loop (pure (id × k) ≫ f)

vanishing loop (loop f) =

loop (pure unassoc ≫ f ≫ pure assoc)

superposing second (loop f) =

loop (pure assoc ≫ second f ≫ pure unassoc)

12 Arrows and computation

For example, a computation that is independent of the feedback value may be

moved out of the loop, as in the ‘tightening’ axioms.

As we have already seen, ordinary functions support such an operator:

instance ArrowLoop (→) where

loop = trace

In the case of state transformers, we want a function that transforms the state

once, while feeding back part of the output:

..................... -....................

-

�

f

σσ

β γ

δ

We can implement this directly, with a little manipulation of the pairs:

instance ArrowLoop (State σ) where

loop (ST f) = ST (trace (unassoc · f · assoc))

This definition is almost an inside-out version of the definition of first for state

transformers. The instance for map transformers is similar:

instance ArrowLoop (MapTrans σ) where

loop (MT f) = MT (trace (unzipMap · f · zipMap))

The instance for automata is more subtle. At each stage, part of the output is fed

back to the input:

instance ArrowLoop Auto where

loop (A f) = A (λ b → let (̃ (c, d), f ′) = f (b, d)

in (c, loop f ′))

However there is no loop operator for non-deterministic functions, unless we are

prepared to relax our axioms.

Exercise 11 Define an ArrowLoop instance for the StreamMap type from Exer-

cise 3. 2

Exercise 12 Prove that loop (first f) = f . 2

3 Arrow notation

Arrows present a usefully general interface to computation, but we have seen that

they force a point-free style. This may be convenient for general definitions and

proofs, but it can be cumbersome for specific programming. For example, supposeMinor rephrasing to im-

prove pagebreaks

Ross Paterson 13

we have the following operations for the state transformer arrow:

fetch :: State σ () σ

fetch = ST (λ (s, ()) → (s, s))

store :: State σ σ ()

store = ST (λ (s, s ′) → (s ′, ()))

The following arrow uses an integer state to generate a fresh number:

genSym :: State Int () Int

genSym = fetch ≫ pure incr ≫ first store ≫ pure snd

where incr n = (n + 1,n)

Note that we must explicitly describe the plumbing, duplicating the n, passing the

new value to store and then discarding its result.

To facilitate programming with arrows, we extend the Haskell syntax with a

new sort of expression, the proc expression for defining arrows. Here is a version

of genSym in the new notation:

genSym :: State Int () Int

genSym = proc () → do

n ← fetch −≺ ()

store −≺ n + 1

idA −≺ n

The right-hand side is a proc expression, a variation on a lambda expression that

defines an arrow. In this case the input has the form (). The next line passes a

value () through the arrow fetch, naming the result n. (The −≺ symbol is meant

to signify an arrow tail.) The value n + 1 is then sent to store. Finally n is sent

to the identity arrow idA to produce the output of the whole arrow.

The new expressions are defined by the grammar of Figure 1. A command

occurs as the body of a proc binding, and elsewhere. It returns a value, but may

also have some effect. The simplest sort of command is built using the arrow tail

−≺ which acts as a sort of application of an arrow to an input expression. The

above example includes sub-commands fetch −≺ () and store −≺ n + 1 that are

of this form. The do command consists of a series of statements, which may define

variables or simply execute commands for effect, followed by a final command, in

the above example idA −≺ n.

These new forms are given meaning by translation to ordinary Haskell, using

the rules of Figure 2. Note in particular the two translations for arrow application

(−≺). The first is syntactically restricted, but is valid for any arrow. In the special

case where f is idA, we have

proc p → do idA −≺ e = pure (λ p → e)

The second possibility has no such syntactic restriction, but because its translation

uses app, the arrow in the type of the arrow expression must be an instance of the

14 Arrows and computation

exp = . . .

| proc pat → cmd

cmd = exp −≺ exp

| do { stmt ; . . . ; stmt ; cmd }

stmt = pat ← cmd

| cmd

| rec { stmt ; . . . ; stmt }

Figure 1: Grammar for arrow expressions

proc p → f −≺ a ,

{

pure (λp → a) ≫ f if FV (p) ∩ FV (f) = ∅

pure (λp → (f , a)) ≫ app otherwise

proc p → do { c } , proc p → c

proc p → do { p′ ← c;B } , ((proc p → c) &&& idA) ≫

proc (p′, p)→ do { B }

proc p → do { c;B } , proc p → do { ← c;B }

proc p → do { rec { A };B} ,

idA &&& loop (proc (p, pA)→ do { A; idA −≺ (pB , pA) }) ≫

proc (p, pB)→ do { B }

Figure 2: Translation rules for arrow expressions

ArrowApply class. Thus neither form is more general than the other, and both are

useful.

The third rule deals with binding of new variables. As the translation makes

clear, a copy of the original input (described by p) must be routed around the

command c for use in the rest of the do command, which also has access to the

output of c, bound by p′. The next rule is the special case where we wish to discard

the output of a command, as with store in the genSym example.

The last rule, dealing with recursion, is more involved. The right side may be

visualized as follows:

Ross Paterson 15

�
�

�

�
�

�
 �

�
�
 �

�
�

-
- -

�

?

?

reset

DELAY 0

IF
CONST 0

+1

next

output

Figure 3: A resettable counter circuit

��
��

-

-
-

��
-

@@ -

p
BpB

p

p A; idA −≺ (pB , pA)

pA

Here pA is a pattern containing all the variables that are both defined and used in

A, while the pattern pB contains the variables defined in A that are used in B . Note

that if recursion is used, the arrow involved must be an instance of ArrowLoop.

Exercise 13 Use the rules of Figure 2 to translate the above definition of genSym

into ordinary Haskell, and use the axioms to simplify the result. Compare your

answer with the point-free version. 2

Exercise 14 Prove that when both translations of proc p → f −≺ a are possible,

they are equal. 2

Exercise 15 Suppose the syntax is extended with a new form of command

if exp then cmd else cmd

Suggest a translation for the new form, assuming the arrow concerned belongs to

ArrowChoice. A case command could be defined similarly. 2

4 Examples

4.1 Synchronous circuits

A synchronous circuit receives an input and produces an output on each tick of

some global clock. The output for a given tick may depend on the input for that

tick, as well as previous inputs. Consider the simple circuit of Figure 3 (taken

from [13]). This circuit represents a resettable counter, taking a Boolean input and

producing an integer output, which will be the number of clock ticks since the input

16 Arrows and computation

was last True. To achieve this, the output is incremented and fed back, delayed by

one clock cycle. The first output of the delay component is its argument, here 0;

its second output is its first input, and so on.

We propose to treat circuits as arrows. It suffices to consider circuits with

a single input and output, because multiple inputs may be treated as input of a

tuple, and similarly for output.

• The pure operation defines circuits where each output is a pure function of

the corresponding input (e.g. if and +1 in the above circuit).

• Composition connects the output of the first circuit to the input of the second.

• The first operation channels part of the input to a subcircuit, with the rest

copied directly to the output.

As with any arrow instance, we shall require additional operations. We define

circuits as arrows that support cycles and a delay arrow:

class ArrowLoop α ⇒ ArrowCircuit α where

delay :: β → α β β

The argument supplies the initial output; subsequent outputs are copied from the

input of the previous tick. A circuit built with loop will not work unless it includes

a delay somewhere on its second input before using it, as in the example above.

One could enforce this by combining the two in a single construct, but the present

formulation is better suited to algebraic manipulation.

Here is the resettable counter circuit in arrow notation:

counter :: ArrowCircuit α ⇒ α Bool Int

counter = proc reset → do

rec output ← idA −≺ if reset then 0 else next

next ← delay 0 −≺ output + 1
idA −≺ output

This corresponds rather directly to the graphical presentation of Figure 3. The

variables denote the values passing through wires on a particular clock tick.

Several implementations of the ArrowCircuit class are possible, allowing many

different interpretations of circuit descriptions. For example, we already have an

ArrowLoop instance for simple automata, so we need only implement delay :

instance ArrowCircuit Auto where

delay b = A (λ b′ → (b, delay b′))

To simulate a circuit, we feed it a list of inputs, extracting a list of the same number

of outputs:

runAuto :: Auto β γ → [β] → [γ]

runAuto (A f) [] = []

runAuto (A f) (b : bs) = let (c, f ′) = f b in (c : runAuto f ′ bs)

Ross Paterson 17

However many other other arrows satisfy the ArrowCircuit interface, permitting a

range of interpretations of a single circuit description. An interpretation could add

probes that show intermediate values, or calculate static properties of a circuit,

such as a wiring description.

Exercise 16 Define an ArrowCircuit instance for the StreamMap type from Exer-

cise 3. 2

4.2 Homogeneous functions

Many parallel algorithms and circuit designs operate on collections of 2n elements,

with behaviour defined by induction on n. We can model these collections in

Haskell using the following type:

data BalTree α = Zero α | Succ (BalTree (Pair α))

type Pair α = (α, α)

Here are some example elements:

tree0 = Zero 1

tree1 = Succ (Zero (1, 2))

tree2 = Succ (Succ (Zero ((1, 2), (3, 4))))

tree3 = Succ (Succ (Succ (Zero (((1, 2), (3, 4)), ((5, 6), (7, 8))))))

The elements of this type have a string of constructors expressing a depth n as a

Peano numeral, enclosing a nested pair tree of 2n elements. However few algorithms

can be expressed in terms of the balanced tree type. Typically one wants to split a

tree into two subtrees, do some processing on the subtrees and combine the results.

But the type system cannot discover that the two results are of the same depth

(and thus combinable).

The solution is to define a type we call homogeneous functions, namely families

of functions mapping trees of size 2n to trees of the same size 2n :

data Hom α β = (α → β) :&: Hom (Pair α) (Pair β)

Elements of this type have the form

f0 :&: f1 :&: f2 :&: . . .

where fn :: Pairn α→ Pairn β.

The following function applies a homogeneous function to a perfectly balanced

tree, yielding another perfectly balanced tree of the same depth:

apply :: Hom α β → BalTree α → BalTree β

apply (f :&: fs) (Zero x) = Zero (f x)

apply (f :&: fs) (Succ t) = Succ (apply fs t)

Having defined apply , we can program with the Hom type and forget about BalTree.

Firstly, Hom is an arrow:

18 Arrows and computation

instance Arrow Hom where

pure f = f :&: pure (f × f)

(f :&: fs) ≫ (g :&: gs) = (g · f) :&: (fs ≫ gs)

first (f :&: fs) =

(f × id) :&: (pure transpose ≫ first fs ≫ pure transpose)

transpose :: ((α, β), (γ, δ)) → ((α, γ), (β, δ))

transpose ((a, b), (c, d)) = ((a, c), (b, d))

The function pure maps a function over the leaves of the tree. The composition

≫ composes sequences of functions pairwise. The ∗∗∗ operator unriffles a tree of

pairs (α, β) into a tree of αs and a tree of βs, applies the appropriate function to

each tree and riffles the results.

When describing algorithms, one often provides a pure function for the base

case (trees of one element) and an expression for trees of pairs, usually invoking

the same algorithm on smaller trees.

Parallel Prefix: This operation (also called scan) maps the sequence

x1, x2, x3, . . . , x2n

to the sequence

x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ x2n

(All this generalizes easily from + to any associative operation.)

If there is only one element (i.e. the tree has zero depth) then obviously the

scan should be the identity function. Otherwise, we need to deal with a tree of

pairs, so the general scan operation will have the form

scan :: Num β ⇒ Hom β β

scan = id :&: proc (x , y) → 〈something using scan on smaller trees〉

An efficient scheme, devised by Ladner and Fischer [12], is first to sum the elements

pairwise:

x1 + x2, x3 + x4, x5 + x6, . . .

and then to compute the scan of this list (which is half the length of the original),

yielding

x1 + x2, x1 + x2 + x3 + x4, x1 + x2 + x3 + x4 + x5 + x6, . . .

This list is half of the desired answer; the other elements are

x1, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, . . .

which can be obtained by shifting our partial answer one place to the right and

adding x1, x3, x5, We can express this idea directly in our notation:

Ross Paterson 19

scan :: Num β ⇒ Hom β β

scan = id :&: proc (o, e) → do

e ′ ← scan −≺ o + e

el ← rsh 0 −≺ e ′

idA −≺ (el + o, e ′)

The auxiliary arrow rsh b shifts each element in the tree one place to the right,

placing b in the now-vacant leftmost position, and discarding the old rightmost

element. This could be supplied as a primitive, but it is also possible to code it

directly:

rsh :: β → Hom β β

rsh v = const v :&: proc (o, e) → do

o′ ← rsh v −≺ e

idA −≺ (o′, o)

Butterfly Circuits: In many divide-and-conquer schemes, one recursive call pro-

cesses the odd-numbered elements and the other the even ones [9]: deleted second ‘pro-

cesses’ to avoid bad

linebreakbutterfly :: (Pair β → Pair β) → Hom β β

butterfly f = id :&: proc (o, e) → do

o′ ← butterfly f −≺ o

e ′ ← butterfly f −≺ e

idA −≺ f (o′, e ′)

The recursive calls operate on halves of the original tree, so the recursion is well-

defined. (The Fast Fourier Transform has a similar structure. See also Chapter ??

for another view.) Here are some examples of butterflies:

rev :: Hom β β

rev = butterfly swap

unriffle :: Hom (Pair β) (Pair β)

unriffle = butterfly transpose

Batcher’s ingenious sorter for bitonic sequences [1] is another example of a butterfly

circuit:

bisort :: Ord β ⇒ Hom β β

bisort = butterfly cmp

where cmp (x , y) = (min x y ,max x y)

Exercise 17 Use the functions defined in this section to define an arrow

sort :: Ord β ⇒ Hom β β

using a merge based on Batcher’s bitonic sorter, combined with rev . 2

20 Arrows and computation

4.3 Combining arrows

We have seen that each arrow type embodies a notion of computation. Sometimes

we want to combine two such notions, e.g. dataflow with state. The trick is to

generalize one of the arrows to an arrow transformer , and then apply it to the

other one. For example, state transformers were defined using functions, but we

can generalize to any arrow:

newtype StateT σ α ι o = ST (α (σ, ι) (σ, o))

Now we can define a new arrow for each arrow α, as follows:

instance Arrow α ⇒ Arrow (StateT σ α) where

pure f = ST (proc (s, b) → idA −≺ (s, f b))

ST f ≫ ST g = ST (f ≫ g)

first (ST f) = ST (proc (s, (b, d)) → do

(s ′, c) ← f −≺ (s, b)

idA −≺ (s ′, (c, d)))

The arrow notation is useful here, especially in the definition of first . Now State

may be defined as a special case:

type State σ = StateT σ (→)

The transformer StateT could be also applied to Auto, yielding an automaton that

also transforms a state on each iteration.

Arrows can also model static data, which is independent of the input. For

example, the following arrow transformer augments an arrow with an integer count:

data Count α ι o = Count Int (α ι o)

The arrow combinators of the base arrow lift directly to the new arrow:

instance Arrow α ⇒ Arrow (Count α) where

pure f = Count 0 (pure f)

Count n1 f 1 ≫ Count n2 f 2 = Count (n1 + n2) (f 1 ≫ f 2)

first (Count n f) = Count n (first f)

Other arrow combinators lift similarly:

instance ArrowChoice α ⇒ ArrowChoice (Count α) where

left (Count n f) = Count n (left f)

This is a very simple example, but the ability to handle such static information

enables arrows to express many efficient algorithms. An example is parser com-

binators that compute properties of the grammar, independent of the input being

parsed [17].

Ross Paterson 21

Exercise 18 Rewrite the definition of StateT without arrow notation. 2

Exercise 19 Given the following definition,

newtype AutoFunctor α ι o = A (α ι (o,AutoFunctor α ι o))

write the following instance, using arrow notation (or not):

instance Arrow α ⇒ Arrow (AutoFunctor α)

2

5 Chapter notes

Arrows were invented as a programming abstraction by John Hughes [8], to deal

with libraries that did not fit the monad model. Unknown to Hughes, workers

in denotational semantics had also defined generalizations of monads, based on

premonoidal categories [16]. A special case of these structures, later called a Freyd-

category, turns out to be identical to Hughes’s definition.

Hughes also introduced the ArrowApply and ArrowChoice classes, though the

distribution axiom is new here. The ArrowLoop class [15] generalizes traces, de-

fined by Joyal, Street and Verity [11], and the recursive monads of Erkök and

Launchbury [7]. A more primitive and powerful version of the arrow notation

sketched here may also be found in [15]. More information about arrows, includ-

ing a preprocessor implementation this notation, may be found on the web page

http://www.haskell.org/arrows/.

The embedded language FRP [6], used to model reactive situations such as

robotics and graphical interfaces, has recently been reformulated in terms of ar-

rows [5]. Map transformers are used as the abstract semantics, though implemen-

tations use variants of stream maps or automata.

Several dataflow languages have been used to model circuits [2, 4, 18]. The

microarchitecture design language Hawk [13] abstracts over the type of values that

may pass through wires. Low-level descriptions deal with bits (Bool), but any

Haskell type may be used, allowing Hawk to scale to much more abstract descrip-

tions, and also allowing the same circuit description to be simulated or symbolically

executed. Related ideas are discussed in Chapter ??. There, circuits are functions,

but in another version of the hardware description language Lava [3], circuits have

the form Value → Monad Value ′ where both value and monad types are param-

eters described by Haskell classes. By selecting appropriate instances, a single

description may be simulated, symbolically executed or presented in a variety of

styles.

Formalisms related to our homogeneous functions include Ruby [10], used in

circuit design, and Misra’s powerlists [14].

Hughes [8] also introduced arrow transformers, including the state arrow trans-

former.

22 Arrows and computation

References

[1] K. Batcher. Sorting networks and their applications. In AFIPS Spring Joint

Conference, pages 307–314, 1968.

[2] G. Berry and G. Gonthier. The Esterel synchronous programming language:

Design, semantics, implementation. Science of Computer Programming,

19(2):87–152, 1992.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in

Haskell. In International Conference on Functional Programming. ACM,

1998.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declarative

language for programming synchronous systems. In 14th ACM Symposium

on Principles of Programming Languages, pages 178–188, Munich, 1987.

[5] A. Courtney and C. Elliott. Genuinely functional user interfaces. In Haskell

Workshop, pages 41–69, 2001.

[6] C. Elliott and P. Hudak. Functional reactive programming. In International

Conference on Functional Programming, pages 163–173, 1997.

[7] L. Erkök and J. Launchbury. Recursive monadic bindings. In International

Conference on Functional Programming, pages 174–185, 2000.

[8] J. Hughes. Generalising monads to arrows. Science of Computer

Programming, 37:67–111, May 2000.

[9] G. Jones and M. Sheeran. Collecting butterflies. Technical Monograph

PRG-91, Oxford University Computing Laboratory, Programming Research

Group, Feb. 1991.

[10] G. Jones and M. Sheeran. Designing arithmetic circuits by refinement in

Ruby. In R. Bird, C. Morgan, and J. Woodcock, editors, Mathematics of

Program Construction, volume 669 of Lecture Notes in Computer Science,

pages 208–232. Springer, 1993.

[11] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical

Proceedings of the Cambridge Philosophical Society, 119(3):447–468, 1996.

[12] R. Ladner and M. Fischer. Parallel prefix computation. J. ACM, 27:831–838,

1980.

[13] J. Launchbury, J. Lewis, and B. Cook. On embedding a microarchitecture

design language within Haskell. In International Conference on Functional

Programming. ACM, 1999.

[14] J. Misra. Powerlist: A structure for parallel recursion. ACM Trans. Prog.

Lang. Syst., 16(6):1737–1767, Nov. 1994.

[15] R. Paterson. A new notation for arrows. In International Conference on

Functional Programming, pages 229–240. ACM Press, Sept. 2001.

Ross Paterson 23

[16] J. Power and E. Robinson. Premonoidal categories and notions of

computation. Mathematical Structures in Computer Science, 7(5):453–468,

Oct. 1997.

[17] S. D. Swierstra and L. Duponcheel. Deterministic, error-correcting

combinator parsers. In J. Launchbury, E. Meijer, and T. Sheard, editors,

Advanced Functional Programming, volume 1129 of Lecture Notes in

Computer Science, pages 184–207. Springer, 1996.

[18] W. Wadge and E. Ashcroft. Lucid, the Dataflow Programming Language.

Academic Press, 1985.

