Quantum Structures and Functional Programming

Jerzy Karczmarczuk

University of Caen, France

Abstract the exponential dependence of the number of states on the size of
the system, the decoherence problems, etc. very hard technicalities.
We present a framework for specifying and solving computational But some deep, conceptual problems remain. The theory gives
problems in standard quantum mechanics using the purely func-us statistical predictions only, but a simulation approach is based
tional, lazy language Haskell. We insist on a fairly high abstraction on the implementation of individual, unitary systems. The intrin-
level, quantum states and operators are opaque functional objectssic non-determinism (and later the non-locality, and other episte-
and their semantics is defined — as far as possible — independentlymologic monstruosities...) makes the whole domain difficult to
of their concrete representations (the chosen base in the concerne¢hodel in a naive way.
Hilbert space). We show how to construct effectively the states for Moreover, our representation of the quantum world is inher-
composed systems, and we present a toy model of quantum circuitently abstract Numeric quantum codes are used to diagonalize
toolbox. We exploit laziness in order to show how some perturba- matrices, or to solve the Schrédinger equation, but neither concrete
tional algorithms become incredibly compact, yet effective. operators: matrices or differential ops, nor wave functions in space
represent physical objects; they are just concrete representations of
guantum “observables”, and of te&ate which isnot directly mea-
surable, but which is necessary in order to measure the physical
properties of the system. In this sense, all “classical” simulations
Keywords: Haskell, Quantum Physics, Vector spaces, Dual bases, of quantum discrete systems (see e.g. the review [5]), i.e. collec-
Operators, Quantum gates, Perturbations, Automatic Differentia- tions of qubits, using vectors of bits and of complex numbers, are
tion, Lazy Programming, Multi-parametric Classes. methodologically a little flawed. We think that a more abstract, yet
practical formalism would be useful, mainly for our understanding,
but also forpractical purposes.

We shall attempt to code those abstractions using a functional
language Haskell. We refuse to touch any philosophical issues in
this text, the semantics of the word “abstraction” is comparable to
Despite the huge amount of code written and used by physicists, many other similar categories of meaning in computer science: a
guantum mechanics is notoriously difficultrmdelon a computer. concrete vector is a collection of components, a “classical” data
By models we mean here programs which operate upon “objects”, structure. An abstract vector is an entity which is independent of
with “physical” attributes (position, speed, etc.), with equations of the coordinate system which would specify those components, it is
motion resulting from some local dynamics of the system, some- a geometric entity, not a concrete data structure. An abstract opera-
times with explicit probability distributions, but in other cases with tor acts on, and transforms abstract vectors. They will be functional
statistical properties resulting from the chaotic dynamics, etc. This objects but we shall not pursue the object-oriented methodology in
“realistic” simulation approach is rarely exploited within the do- this paper ; the relation between the OO programming and math-
main of quantum physics. Yes, we can solve the Schrédinger equa-ematical abstractions is still a little problematic. At any rate, an
tion, perform symbolically some awful perturbation expansions, vi- abstract vector will be a functional object which is concretized by
sualize some interference patterns or diagonalize some matricesits action on a coordinate frame. So, obviously, the entities we play
We can even do it at home, using some popular numeric and vi- with, are also some concrete representations, but, as the reader will
sualisation software [1]. Still, we don’t know really how fout a see soon, their generality is incomparable with the usage of stan-
quantum system into a computiera methodologically sound and dard matrices.
intuitive framework, although all the relevant mathematical princi-
ples have stabilized many years ago, see [2, 3], and several other, 2 Aims and contents of this work
books with similar titles.

With the advent of “quantum computing” theory, see e.g., [4], This is not a “Quantum Computing” paper, although some exam-
and the elaboration of algorithms based on information transmis- ples of quantum information processing are provided. We present a
sion by quantum structures: quantum cryptography, teleporting, Small set of programming tools, coded in Haskell, permitting to ma-
factorization of huge integers, etc., the recognition of this difficulty nipulate formal quantum structures at the level comparable to stan-
reached the realm of computer science, and favorized a somehowdard student textbooks on quantum theory, and, as we said above,
formalistic approach to the description of quantum systems. Re- We insist on keeping the genericity of the formalism as high as pos-
searchers underline the massive parallelism of quantum algorithms,sible. A good deal of the transformations between introduced en-

This is a preliminary, incomplete draft, just for friends, and for
my own assessment of what works, what is wrong, where are my
technical problems, and what do | really want!

1 Introduction to Quantization

1.1 Quantum world is “abstract”, thus functional

tities is based on theniversal propertiegin the categorical sense) two states, saylJp and Down, or BO and B1 (suggesting more
of their mathematical content§&o, our main target is the teach- Booleans than orientation...). A particle (a massive point) has a
ing, and comprehension of formal quantum-mechanical calculi positionx and a momentum. A 3D rotator has an angular posi-
assistedlirectly by a computer. tion: two real numbers describing the (normalized) rotation axis,
In a sense we develop a “symbolic” computation package us- and its azimuthal angle. Sometimes systems which seem identical
ing a functional language, but we underline the fact that we do not at a glance on these states, are not. A one-dimensional oscillator
processs any symbols, but objects specified through their mathe-can be described by the position and the momentum of the moving
matical, operational properties. Those properties are introduced,point, exactly as a free particle. But the space topologies are very
and coded in a minimalistic way. One of main ambitions of this different in both cases. The fact that for the oscillating paiahd
work is a peculiar methodologic honesty: the programming frame- p arebounded may change completely the mathematical descrip-
work does not encourage the user to “cheat”: if something cannot tion of two systems, e.g., a quantum oscillator has a discrete (Fock)
be measured or copied, then it cannot. We shall not confuse ab-basis, labelled by the number of elementary excitation quanta; a
stract entities, such as the labels chosen for the basic vectors in dree particle doesn't.

Hilbert space, and integer numbers: 0, 1 etc., which can be ma-

Passing to the quantum description of such systems we have to

nipulated arithmetically. Readers acquainted with the functional take into acount the following:

programming shall see some parallels between those quantum con-
straints, and the fact that one cannot copy or analyze the structure
of a functional object. These analogies don’t seem to be accidental.
We don’t want to restrict our attention to notorious qubits. In
our opinion this is an annoying fault of many introductory texts
devoted to quantum computing: computer science-oriented read-
ers who see just one, concrete model of one physical system have
often severe problems with the understanding of common, under-
lying laws, and with the recognition of many isomorphisms and
particularities which are natural for people formed as physicists. A
qubit in an ion trap is very different from a qubit implemented as
a polarized photon. Thus, we shall begin with a whole big class of
potential physical systems. If in some future we will have to model
real, physical quantum circuits, we shall not escape from the ne-
cessity of analyzing their interaction with the environment, and the
qubits will not provide a complete description of the system any-
way. Moreover, although the career of the Quantum Computing do-
main among computer scientists is due to such “pure algorithms” as
the Shor factorization algorithm [6], see also [7, 8], we believe that
technicallymuchmore important will be the work on simulation of
general, different quantum system on quantum computers, as noted
already by Feynman[9, 10, 11, 12], since this is badly needed by
all modern technology. The same attitude has been expressed by
Preskill [16]. This means that we shall need some sound frame-

e Each classical configuration, for exam@d®wn, or X, or

(0, ¢)) should be consider aslabel, a “vector index” of a
vector in a metric (Hilbert) spac&his is the most important
assertion of the whole introductionA quantum state is rep-
resentedgum grano salisthe norm is conventional, and the
global phase factor is unphysical) by such a vector. A clas-
sical state might thus be considered ama componertf a
possibly infinitely-dimensional quantum state, but this classi-
cal state has no vector space properties attached to it, so we
prefer to treat is as an abstract label, a description of a chosen
basis.

Some classical description elements are superfluous in a non-
trivial way. One cannot independently specify the position
and the momentum, or the axis and the azimuthal speed of
the rotator. They constitutalternative representationsor
different bases At the present stage we don'’t need to spec-
ulate about the Heisenberg relations. Just accept that we can
represent a particle either through its momentum, or through
its position, in the same sense as a spinning particle may be
represented alternatively in different coordinate frames. Of
course, conversions between those representations are possi-
ble.

work for auniversalquantum computer, universal not only in the We can define thus some quantum systems, e.g.

formal sense, like the Turing machine, but able to model more or

less seriously other quantum systems[13, 14], which physically are data Qubit = Up | Down

far from qubit processors. -

You may ask wrt. which axis, but don't.2

We shall often exploit as a standard example the quantum har-data Mpoint = Xc Double | Pc Double

monic oscillator, whose set of statesrifinite, labelled by integers -

Free particle

from 0 to oo, because it provides a good test for the effectiveness data Rotator = Ang Double Double

(notefficiency. ..) of the proposed algorithms.

| Jm Integer Integer

This presentation is by necessity rather simple and incomplete, data Oscil = X Double | P Double

just an introduction to a future work. The paper is addressed to non-
physicists, although it requires some minimum of knowledge of

| N Integer

quantum mechanics, at least some acquaintance with the “quantumvhere we have invested the following knowledge:

computing folklore”, some mathematical (algebraic) generalities,
and a strong interest in this field. All information essential for our
coding will be introduced incrementally in the text, but we cannot
explain all the physics behind. We do not address the problems
of efficiency, although we recognize the importance of this issue.
A reasonably good acquaintance with the functional programming
and with the language Haskell is assumed.

e Each item defined at the right represents a vector “index”

space. Alternative bases are variants of these data structures.
Of course, since a particle can take an infinite number of po-
sitions, instead of enumerating them all, we use a parameter-
ized data structure. We put togetradt classical (but con-
forming to quantum restrictions) configurations, all position
vectorsor all momentum vectors for a particle.

1.3 Manufacturing quantum systems

2just to avoid a rather silly answer: “ANY”. This is an important is-

sue, but at this level we cannot discuss the properties related to the underly-
A classical systenis 1 a3 set of observable states. A flip-flop (a N9 spatial substrate (if it exists at all; there are plenty of bi-level quantum sys-

one-bit, two-level system), which later will become a Qubit, has

from the modelling perspective; we shall not start an ontologic divagation here. . .

tems where the orientation does not play any significant role). In further exam-
ples we shall use labelB0O and B1.

e Note that a zero-dimensional set (finite number) of index whereScalar is usually a complex numbeCémplex Dou-
values implies a finite-dimensional vector space, and a one- ble). In fact, the package is more parametric than described in
dimensional set of, sayX Double specifies an infinite- this paper; we give some details in the Appendix (A), but the so-
dimensional (here even non-enumerable) vector space. Thus,lution is not fully satisfactory because of the specificities of the
the Qubit datatype having two instancedp andDown is Haskell type system. The default definition of the bracket specifies
the foundation of a two-dimensional space with the basis vec- the orthogonality of the basis vectors:

tors<(1)) and(?),or, using the Dirac notationi) and|0), kdelta a b = if a==b then 1 else 0

or|+) and|—), or| T) and| |), etc. A basis state vectorfora This holds only for discrete bases, in the continuous case we would
particle, denoted byz) has a continuous set of components, have the Dirac delta distribution, which is singular, and needs a

for z in R". The generalization t&* is obvious. more sophisticated formal apparatus in order to put it into the com-

puter. Scalars are not numbers then, but operators, or distributions
in the Schwartz sense; this is postponed to a future work, from now

on we shall concentrate on discrete (not necessarily finite) systems.
The default bracket is not the only one, and the instances may over-
ride it, for example in thé\ base of theDscil system the follow-

ing holds:

bracket (N j) (N k)
| =0 && k>=0 = kdelta j k
| otherwise = 0

e For a Rotator, the dual to tleng ular dependency is a pair of
integers(j, m) describing the “total” angular momentum, and
its projection oranyaxis. A qubit might be implemented as
aj = 1/2,m = +1/2 rotator (spin). A photon is a particle
with j = 1, but it can represent a qubit as weth = +1,
since for massless particles the value= 0 is excluded.

e In the last example of the harmonic oscillator, we introduced
another useful (Fock) basis, the numiem (N k) is the
level of energy, or the excitation number (the number of

quanta), see the section (2.5). This is not the full truth, the jn order to eliminate all the negative excitation levels. For the ro-

energy levelk in |k) must be non-negative, while an- tator statej,n): |m| < j must hold. There exist non-orthogonal
teger has no such restrictions, but we shall deal with such pases as well (the coherent states for an oscillator is a good ex-
details in another way, see the next section, (2.1). ample thereof), and, as we knolacket (X Xx) (P p) is

complex exponentiadxp (ipz) (in this paper the Planck con-
ant: & = 1). In any case the brackets must fulfil the relation
bracket a b = conjugate (bracket b a) , should be
non-degenerate (not all vanishing), and positibeacket a a
is real,> 0. Brackets will be use as fundamental bricks for the
construction of quantum probability amplitudes.

Remarkably enough, althoudtbase has no arithmetic prop-
erties, we can easily give them fonctionsover those “labels”,
SDy a known, standard construction, described in many books; our
favourite is [15]. We define some abstract addition and multipli-
cation by a scalar as members of a class which represents vec-
tor spaces, and we say that some functions whose codomain are
Scalars, make the instance of this class:

Depending on the user needs, those bases may be freely augmente@t
For the harmonic oscillator, we may introduce yet another alterna-
tive basis, say,..] Ch Complex , a complex number which
represent a so callezbherent state— an “almost classical” wave
packet base in which any compatible quantum state can be devel-
oped as well. This is extremely important for physics, begins to
interest computer scientists, but for us it will play a secondary role.
Those data structures have no specific mathematical propertie
yet they are just labels (related to, but not identified with the basic
vectors tagged by them). We cannot add them, nor multiply them
by numbers. In order to satisfy the superposition principle, we must
define all the relevant math, making from our quantum states fully-
fledged vectors in a metric space. In order to represent compound
systems we must introduce some structuring mechanisms such asnfix| 7 *>

tensor products as well. infixl 6 <+><->

2 Basic Programming with Quantum States class Vspace v where
(<+>) mv->v >y

2.1 Vector structure induced by the metric (<>) s v->v->v
(*>) : Scalar -> v > v

As mentioned above, the concrete “classic” configurations|say
or(N 3) are labels attached to vectors forming a basis for a given type Hvector b = b->Scalar
system. If the space is metric, we magstulatethe existence of an

appropriate sesquilingatscalar product” for these entities. Fol- instance Vspace (Hvector b) where
lowing Dirac symbolics we call this product the “bracket”. For (f <+> gy a=fa + g a
example, the fornbracket (N j) (N k) reads in the stan- f<>ga=fa-ga

dard notation(j|k), (this order is conventional!) and it is defined c *>f) a=cf a)
as a member of a particular type class:

And now, defining a currified function ovéthases
class Eq a => Hbase a where

bracket :: a -> a -> Scalar axis :: (Hbase a) => a -> a -> Scalar
bracket j k = kdelta j k -- Kronecker
axis x = bracket x

instance Hbase Qubit) .)
instance Hbase Oscil -- ete. we might assume that we got a representation of our quabasic

adjoint states(7 |, (n|, etc. We can write

3Sesquilinear: linear in one, and anti-linear in other argumettyz, By) =
aBo(z,y). (2:+1)*>axis(N 3) <-> 4*>axis(N 1)

0.5*>axis Up <+> (0:+2)*>axis Down

f
g

etc. 4, so, the “axes” are full-fledged vectors. But we will need
more, they are not ygfeneraimembers of a metric space. We don't
know how to compute scalar products involviiigor g from the
combinations above. We will need sotireear functions, the axes
are auxiliary entities which cannot be linear becauséithese has

adjoints, if you wish) of kets, so they can be constructed from them,
and be their legal arguments, in order tkat(dual kt) give

the correct answer 185. The construction is remarkably simple.
The dual to a kekt should be an axis, a function ovkibase.

The following should hold

no associated algebra. However, we see here the power of a modern

functional language, we have easily and effectively created an “ab-

straction”. x

axis (N 4) is not decomposable, we cannot

extract its only component, we can only check its value against an-

other one, by acting with it on son{& k) , say,x (N 6) , and
getting O or 1. This is a way the quantum elementary measuring
processes are initiated (but this “filtering”, and the construction of
a probability amplitude is yet far from obtaining a concrete experi-
mental answer).

For a computer scientist the — perhaps — most important prop-

(dual kt) alpha
dual kt = kt .

kt (axis alpha)
axis

or:

We may simplify the notation even more:

dual = boost axis -- where

boost = flip (.)

The functionalboost will be used also in the section (2.3) and

erty of the mathematical structure imposed on the quantum stateslater. We can easily prove the validity of the constructiorktif=

is thatphysicallyin the addition|x) = |#) + |¢), or the filtering,
say: |¢) = (0]¢) - |0) + (1]y) - |1) the two terms are evaluated

in parallel, simultaneously, and the addition takes no physical time
whatsoever! Obviously in our, or any other simulation of quantum
processes, this is simply impossible, but this is the crucial point
which distinguishes the complexity of the quantum processes from
their classical shadows.

In the next step we define the dual base “ket’s:), |n), etc., as

ket alpha is an elementary ket, then

kt beta = dual (ket alpha) beta
ket alpha (axis beta)
conjugate (axis beta alpha)
bracket alpha beta

dual

which is correct. The linearity does the rest.
A conscious reader may observe that the construction seems

functions over our vector base (the axes). From now on, the term Unnecessarily complicated. For aayes objects(a| and (3| we

“vector” used generically will denote both axes and kets, but more

specifically, we shall treat rather kets as vectors, and axes will be

namedco-vectors in order not to forget the distinction between
them.
The primitive kets, dual to elementary axes are:

ket alpha ax = conj ax alpha

whereconj is the complex conjugation lifted to the functional do-
main: (conj f) x conjugate (f x)). The following

test:

ax = 5.0*>axis(N 3) <-> 7.0*>axis(N 2)

kt = 9.0*>ket(N 2) <+> 2.0*>ket(N 3)

res = kt ax

givesres = —53.0, and the first stage of our construction is almost
complete.

Our abstract functional vectors have now sufficiently rich math-
ematical structure. A linear combination of elementary kets (using
<+>,<-> and*>, since kets form also ¥space) is an arbitrary
vector|y). This is the principal face of the quantum states we shall
work with.

We shall heavily use the combinatorial notation, simplifyfng
X = g x tof=g, and exploiting the standard combinatdgrs
andflip

(f.9 x=1(x
fipfab=fba

Composer
“Flipper”

So, we can write:

axis bracket
conj (.) conjugate
ket = flip conj

can computda|3) as

(@lB) = (a8 =D (alm(Blm"

vy vy

@)

where~ is a Hbase index. In fact, for a finite base (e.g., the
qubits), this is an effective procedure (and often the only one).
However if the base is infinite, but all theoncretely constructed
kets within the program come from finite linear combinations, our
procedure vyields the result after a finite number of steps, while
the formal prescription (1) is ill-defined, and will never terminate.
Moreover, the decomposition of a quantum state in a concrete basis
from the physical point of view is not a neutral operation, it con-
stitutes a measurement; formal insertiorilof= 3 °_ |)(v| into a
Dirac bracket is a purely theoretical trick, never done by the Nature.
Of course, we shall use it in many scientific calculi, but it should
be avoided — if possible — in th&mulationof quantum circuits,
apart from primitive gates.

The mathematical framework constructed gives a recipe for
programming the quantum probabibility amplitudes for the state
[): (a]tp), or the physical measurement probabilities

Pa () = [{afy)|?)

that a system whose statelis) yields upon a measurement the re-
sult which correspond to the componente.g., the spin is “down”,
or the oscillator finds itself at the ground level).

We complete this section with the introduction of one missing
object: the zero vector, not needed until now. If vectors are func-
tions, then the definition of zero is simple: it produces the scalar
zero by acting on anything. We complete the cl¥’space v
by: vZero :: v , and define within itb->Scalar instance:
vZero = const 0 . Itis not needed as an independent object if
the field os scalars is equipped with zero, but sometimes it is useful

There is one ingredient missing. How to compute the scalar product for simplyfying some formulae.

(¢]p) of arbitrary|) and|¢), and in particular the squared norm
)2 (|v)? We still don’'t have arbitrary “bra’g | with
the same type aaxis , and which can be considered as duals 'or

“In Haskell the expressioB:+b denotes a complex number+ ib.

2.2 General bras and bi-dual base

It is becoming really boring, but for the simplification of some de-

2.3 Operators

An operator is a function from vectors to vectors. Linear operators

riations we may need yet another space of co-vectors, this timein quantum mechanics play primordial roles, some of them cor-

identified with arbitrary brag|, and implemented as functions over
kets (the dual base). (Recall that axes were functionstébases
only, and we could not use them in arbitrary scalar products, al-

respond toobservablesother to symmetry transformers, and the
whole evolution in the Schrédinger picture of a quantum system is
given by a linear operator. Actually, the only thing we can do with

though they spanned a vector space.) In order to transform a keta quantum state, apart from computing scalar products, is to ap-

into a bra, we apply the functiozpax :
coax = boost dual

Proof. A ket converted into a bra, acts on another ket producing a
scalar.

coax kt ktl = boost dual kt ktl
= (kt . dual) kt1 = kt (dual ktl)

Exercise.Verify the sense of an alternative proposition
coax’ = flip id . dual

whereid x = x is the identity function. It yieldzoax’ kt
ktl = ktl (dual kt) . What is wrong with it?

In particular, an elementary bfa| belonging to this family, may
be defined as

bra alpha
bra = coax .

coax (ket alpha)
ket

or

This construction fulfills:

(bra alpha) kt
conjugate (kt (axis alpha))

and we may construct directly the linear combination of such bras
without passing by the auxiliary axes.

The reader should observe that we have two transformations

from the dual basis) (kets) to(| of two species:dual
duces axes, whileoax yields bras. The function&et = flip
conj itself transforms axes into bras, a simple exercise for the

pro-

reader, who might prove also that the diagram on the Fig. 1 is com-

mutative.
|ket) dual »(axis|
coax
ket
(bral

Figure 1: From kets to bras

On the other hanthere is no ‘trivial’ (universal) transformation
from arbitrary bras (including axes) to kets, the only way is the

decomposition of a bra in a concrete basis, and the reconstructiontriCes

of its dual from the coefficients. It involves thus a filtering, a part
of measurement.

ply a linear operator to it. All quantum circuits are composition of
linear operators. All observations involve the application of some
“observable” operator.

We may begin an explicit construction of some operators, de-
parting from their action on thidbase objets, e.g., saying thét
k) should becoméN (k-1)) , etc. Butthe construction of func-
tionals acting on functional objects in this way, is delicate, we shall
not forget that lifting the seX of objects to a vector space Fux)
of functions on them is eontravariantfunctor! If we have a trans-
formation F' : X — Y, then the induced operatét” is adjoint,
F* : Fun(Y) — Fun(X). This can be seen from the standard def-
inition, the pullback:(F* f)z = f(Fx). This is important for the
lifting of operators to the dual base.

One standard class of operators is composed ootitar products

of vectors:|¢), [¢) — |¢) (¢, defined as¢) (¢[|x) = (LIx) - |9)-

In Haskell we get

(outer phi psi) chi = coax psi chi *> phi

- = psi (dual chi) *> phi

One simple and useful member of yhis family is a proje®ar =
|a){«|, wherea is an index. It may act on any vector, and it is
defined byP.|¢)) = (al¢) - |a), so its implementation is easy,
we must only decide whether we need it to act on axes, kets, or on
general bras. There are thus three possible to define within our type
system, differently typed instances of this operator, all immediate
to construct.

axproj alpha ax = ax alpha *> axis alpha

Others:

ktproj alpha kt

kt (axis alpha) *> ket alpha

brproj alpha br
br (ket alpha) *> bra alpha

= br f *> coax f where f=ket alpha

The projectors (and other operators) form a vector space, the con-
cerned class instance is

type Hmat b = Hvector b -> Hvector b
instance Vspace (Hmat b)

where

vZero v = vZero
f<t>g)a=fa<+t>ga
f<>ga=fa<>ga
(c *>1f) a=c>f a)

and if the base is finite, they may be effectively represented as ma-
In functional representation the multiplication of operators
is just their compositior.)

In the previous section, (2.2) we have shown how to construct
co-vectors out of vectors, by the duality operations. It is obvious
then that having operators acting on co-vectors, e.g. on axes, we
can reconstruct operators acting on kets. If we forget for a moment
the fact that in fact we are defining the adjoints, the recipe is again
trivial (universal). From armop defined on axes, we construct an
operator acting on kets by our old acquaintabhoest .

How to represent the operator of energy (quantum ledebf and this is all. All physics students in the world know thét=

an oscillator in theN basis, or the annihilator operatarwhich aTa. Proving thattre . ann yields an operator equivalent to
decrements the excitation level, and defined by their action on alevel (and also that the commutatann . cre <-> cre
one-component ket in this basis: . ann is the identity) is more cumbersome, but it may follow
. the same formal, on-paper reasoning as the traditional one, found
N|n) = n|n), (3) in quantum theory textbooks. We have the quantum oscillator in
an) = Vajn—1) (forn > 0), 4) the computer in the for_m as abstract as possible, an_d we can solve
several classical exercises from a quantum mechanics textbook by
for arbitraryn? Their decomposition gives infinite sums programming. We will not get any symbolic answers, though, un-
less we pass from the numeric domain of scalars and integers to
R oo some formal, symbolic algebra, which is beyond the aim of our
N = Z n|n)(n|, (5) current work.
n=0 Lifting of these operators to general bras is equally easy, we
oo must boost them once more, but we obtain in such a way the ad-
a = Z Vvnln — 1){(n|. (6) joint of the operator. The presented construction does not permit to
n=0 derivethe adjoint which would act on vector of the same species, by

e . . the standard relationte|T"|3) = ((8|T|a))*. This is quite ob-
We would have to operate with infinite matrices. Once again, the \joys, the construction of an adjoint is a non-universal procedure,
functional, parametric representation of states and operators takeg,q categorical reasoning may help us here. Onlydorcrete dis-
into account the fact that effectively generated entities within the crete basis it reduces to simple operations, such as transposing and
program have always a finite number of components, and the pro- complex conjugation, otherwise some othencreteproperties of
cedure becomes effective. But, attention, in a lazy language we cany operator must be known, e.g., the fact t(‘ﬁ{)+ — _doon

easily generate “infinite” objects, possessing an unlimited numer . :) . dz
of components. The expressieffectively generatetheans that the domain of functions which behave sufficiently decently at the
boundaries of the region which determines their scalar product.

only a finite part of such entities is instatiated. The user in princi-
ple can define such vectors as the coherent states for the oscillator,

[2) = 52 (=" /vl In):

Some qubit operators

Material point dynamics, differentiation operators, infinite matrices

coherent z = coh 0 1 corresponding to the annihilation operator, etc. are entities vital for
where physicists, but not so importatddayfor computer scientists. We
coh n coeff = coeff *> ket (N n) shall return to physics in the section (2.5), but the latter will demand
<+> coh (n+1) (z*coefflisqrt(n+1)) the construction of models dealing with bits and their sequences.

Already at the one-qubit level, the transformation of state vec-
tors is not entirely trivial, since the freedom of choice is limited.
The corresponding operators, which transform ket$:— |)’ =

A|w> must be linear and unitary (preserving the norm). In the clas-

(whereisgrt = sqgrt . frominteger), but the result is
unusable. Handling of infinite series in a lazy language requires
some conscious methods, see e.g. [17]. We shall use them later.
Here is the coding of théV operator. We begin with an aux-
iliary function opn which is linear, acts on axes, and has the se- sical concrete representation, where the state is a v cgo ,an

mantics:opn is (N Kk ivesk *> axis (N k N
antics:opn (axis (N K)) gives s (N k) ts operator is x 2 matrix. We shall use mainly projectors, and later

definition is . . ;) L
we will see that in our functional style we define composition of
opn ax a@(N k) = frominteger k * ax a operators backwards, using their adjoints, which is relatively easy
N to understand, but needs an additional explanation.
Finally, the lifting of theV (level) operator to kets is given sim- The unary “not” (Boolean negation) operator lifted to the do-
ply by level = boost opn . main of vectors (kets) should satisfyiot|0) = |1); not|1) =

Following the same reasoning we may define the annihilation |0). Its matrix representation is thus the Pali matrix: not =

operator, and its adjoint (or its hermitian conjugate), the creation / 1 o o o
operatora™ |k) = vk + 1|k + 1). But beware, don't forget the 1 0)- This is a self-adjoint operator, and moreover iingo-
contravariance of the lifting functors; we had no problems wth Jution (it is its own inverse). In the domain of co-vectors (bras or
since this is a self-adjoint operator. If we define axes)

oa ax (N K) = isqrt k * ax (N (k-1)) Its more abstract representation is the “switching” operator

; |0)(1] 4 |1)(0|, and this is our implementation, which is a slightly
oc ax (N k) isart(k+1) * ax (N (k+1)) modified set of functionals already presented in the section (2.3),
then theapparently loweringoperatoroa acts on axes as a creator, but restricted to represent dyadic pro_ducts of kets, elementary or
it transformsaxis (N k) into a vector proportional taxis not. Thus for any ketp) and|q) we definelp) (q/:
(N (k+1)) g Th(_a same paradoxal_property is obeyedday_ _it - dyade p g = \ax -> p ax *> dual q
is an annihilator in the axes’ domain. But — as the tr{idltlon N and for elementary|a), where o is a state label, we
guantum mechanics demands — we want operators acting on ketshave warp alpha beta = dyade (ket alpha) (ket
ggg ;%étgftﬁgslmyezzsﬁgizbge order. In the section (2.4) we Sha”beta) , which can be optimized into

' warp alpha beta =

ann = boost oa \ax -> ax alpha *> axis beta

cre = boost oc The projector|a)(a| is justwarp alpha alpha . The dyade
|a) (8| with « # (3 is calledwarp since it “bends” one direction in
the Hilbert space into another. The quantum negation is

gnot = warp BO Bl <+> warp B1 BO
Ther-phase shiftes. (another Pauli operator) represented by the

matrix ((1) _01) takes the form

sigz = proj BO <-> proj Bl

and the sum

had = sgrt 0.5 *>(gnot <+> sigz)

a (11
v2\1 —-1)
Hadamard operator, which performs the transformatiéns —
|0y +]1))/+/2, and|1) — (]0) — |1))/v/2, used further to build
entangled pairs, to construct the quantum Fourier transform, etc.

produces the matrixd the well known

An arbitrary (real) rotation which transforms, sz%,é) into

cos(f) \. [cos(d) —sin(0))
(sin(e)) (sin(@) cos(8) has of course the representa:
tion

rot theta = cos theta *> id <+>
sin theta *> (warp B1 BO <-> warp BO B1l)

where the second term is proportional to the third Pauli matrix,

2.5 Physical example

We shall solve now a conceptually simple, but non-trivial textbook
problem: the perturbational corrections to the lowest energy state
|0) of the anharmonic oscillator, with Hamiltoniaht = N + \H’
with B’ = A\3*, where) is a small coupling constant, ards the
position operator. (We will adopt the unit values for the elasticity,
mass, and the Planck constant; the energy has been shifted so that
Eo = 0, but we shall keep it for some time in order to have a
general development algorithm.) For people interested in quantum
computing this is a digression, but its aim is not the development
of physics, but the demonstration of the power of lazy evaluation!
Perhaps it is worthwhile to say a few words about tioe+
perturbed system. The Hamiltonian of a classic oscillatoHis:=
1 (p* +) which, according to standard rules of quantization be-

comes the equivalent operatéfy = (p* +22) /2. Introducing

a = (& + p)/V2 it is easy to show thatl, = a*a + 1/2,

and the energy levels arEé"> = (n|H|n) = n + 1/2, where

n = 0,1,2,.... The spatial wave function&|n) which corre-
spond to those energy levels are easy to compute on paper, and
they can be computed almost directly by our package as well. We
show, just for instruction, how to compute them numerically us-
ing the algorithm, which according to the current teaching stan-
dards ispar excellencesymbolic, and designed to be solved on
paper. Wemustinvest the knowledge about the standard represen-

0 —i tation of the momentum operator in the positional representation:

%=1 0 p =1L From:al0) = 0, we deduce thato(z) = (z|0) obeys:

Note the — already noted — contravariance of the operator -L4(z) = —z¢o(z), SOtho(z) = exp (—z”/2). But from the
construction, in view of the fact that operators are functions which identity (z|a*|n) = (z| (& — ip) /V2|n) = vn + L{z|n + 1),
do something to their arguments. Suppose that we shall sequenyye see that
tially act on a kefuy) with two operators, say, first witd (opa),
and then withB (opb). The computation{x) = B A|4), which Yo (2) = —— <331/1n(33) _ iwm) o
can be graphically depicted as shown on Fig. 2, is implemented as 2(n+1) dx

follows. First we define the operators acting on co-vectors (axes)
and at the end wboost them:

boost opax

opa =
= boost opbx

opb

This “quirk” will be very important for the construction on opera-

' This is a differential, recurrent formula, which needs the derivative

of ¢, in order to compute,, ;1.

Of course we don’t want to use any numerical approximations,
nor involve any other tool other than our small Haskell library. We
have included thus into it, our lazy automatic differentiation pack-
age [18], which permits to “lift” the normal numerical expressions

tors acting on tensor products, which are multi-linear. So, we have within a program to a domain which structurally is an infinite se-

B A

—)

Figure 2: Chain of operators

chi = boost opbx (boost opax psi) =
psi . opax . opbx =

boost (opax . opbx) psi

quence: the value of the expression together withlltderivatives,
and which mathematically belongs to a simple, but non-trivial dif-
ferential algebra. All typical arithmetic operations and elementary
functions are overloaded for this domain. For all the necessary de-
tails see the appendix C. The procedure which constructs numeri-
cally the full set of Hermite function&, (z) is literally the formula
).
herm 0 x = exp(-x*x/2)
herm n x = (x*hh - df hh)/sqrt(2*dConst n)

where hh = herm (n-1) x

It suffices to launchmap (dval . herm 30 . dVar) ,
wheredVar constructs a generator (differential variablé) of

That's why on the Fig. 2 the operators acting on kets are applied asour differential algebra from a given numeric value, aivhl gets

drawn — from right to left, which is the opposite convention to one
found in most papers on quantum gates, etc. tBistconvention

the “main value” of the resulting tower of derivatives, over a list of
x values in order to generate the plot on Fig. 3. One of standard

corresponds better to the standard (Dirac) notation, and we shallexercises in quantum mechanics is the comparison of the plot of

keep it.

| H,,(x)|? with the classical distributions in order to see what is the
sense of the quasi-classical limit of quantum mechanics, so such ex-
ercises are methodologically useful, although rarely anybody needs
the concrete numerical values Hfo (z).

In finding the corrections we will not need the positional represen-
tation, only theln) basis. It is utterly trivial to show that the first

The only final result needed i8’. The equations above are al-
0.6 7 ready effective algorithms able to compute two involved quanti-
0.4 — ties, £’ and (k|+), but a third one: (k|H'|+)) should better be
eliminated. We achieve that through the substitutibf’|¢) =
0.2 S, Hi (m|), whereHj,,, = (k|H'|m), which transforms the
0— equations above into
—0.2 E' = Hyp+XAY Hoym(mlt), (13)
—0.4— o "
1 ! !
k = ———— | H H 14
—10 -5 0 5 10
T It may seem rather useless to repeat here this classic derivation,

but in no existing popular textbooks the reader will find sath
))] gorithm, since the laziness is here the crucial ingredient, and spe-
Figure 3: Hermite functiorfso cialists in quanta rarely use functional languages. The rest is the
coding, where we have simplified slightly the formulae, omitting

. L .y the checks fok etc. negative; the matrix elements and the function
correction to the unperturbed solution is equal@fH’|0), and the psi vanish then.

textbookssometimeshow a compact formula for the second term; As we have already mentioned, our code is more generic

usually this is left for the students, and it may occupy them for yhan nresented above, the states etc. are parameterized by arbi-

awhile.... Computing the third-order correction is near the limit of 51y scalars, which are equipped by a sufficiently rich arithmetic.
the nervous resistance of a typical physicist; the problem is that for o(e the field of scalars is composed of expressions of the form

many interesting cases in technical applications of quantum physicsgq .5 o1 > g2 > which represent the power series
such as molecular spectra, those, and much higher correatiosts €0 + Ae1 + esA? + ---. Such series are constructed lazily, and

be computed. don’t need any truncations. Here is the construction:
The consequence of this is obviously a very intense exploitation

of Computer Algebra packages, and the production of horrendous,hp = x.x.x.x where

multi-page formulae, unreadable (see e.g., [19]), and often badly x = (l/isgrt 2)*>(ann <+> cre)

optimized, just to convert them into Fortran programs, and com-

pute numerically a few numbers. We have chosen the oscillator, elmat k m = hp (ket (N m)) (axis (N k))

and not, say, the Hydrogen atom, because of the simplicity, but the

approach generalizes in a fairly transparent way (although the con-ep = e0 >

crete formulae might become much more tedious...). sum [elmat O m * psi m | m<-[0,2,4]]
We show thus a complete solution of the stated above problempsi k = (elmat k 0 >

which gives the numeric solution directly. This will be probably the sum [elmat k m * psi m |

shortest program to do that which the reader could find anywhere, m<-[k-4,k-2 .. k+4]))/

and it uses the series expansion described in [17], and presented in (negate(frominteger k):>ep)

a few lines in the Appendix (B).

The Schradinger equation which gives the engffigyf a system gggo Beggllt? i56ég%25891r§j7ég-75- 'i-6251 235_81551 '241-2%91%
in a stateg W) is: (H — E) |¥) = 0. We do not know® nor |¥). ' o ' ;.- }. AS seen, this lime we used ef-

fectively the expansion of the quantum state in a known basis, but
We may suppose, though, thatifis smalll, the series expansion of we knewfrom the structure of that the number of non-vanishing
E = Eg+AE1+)2Ex+- -, and|¥) = |To)+A|¥;) +- - - makes matrix elements within the infinite sum is small.
some sense, even if the series is only asymptotic (divergent; thisis Launching the program above results in a very bad, and very
the case here). Hef@,) = |0), and we know that the unperturbed inspiring surprise. One gets 8, perhaps 9 terms, and the memory
equation(N - Eo> |0) is fulfilled. We reformulate the expansions ~ Problems begin... The consumption of the memory ressources is
above as folows: exponentlal,_ because the lazily evaluapesd k is recursive, and
) each recursive call generates new instances gishethunk on the
|) 10) + Aj), (8) heap, thunks which become larger, and larger. .. One of the reasons
E — Eo+\E' ©) _Nhy in sm_e'ntlflc computations the lazy coding is rather unpopula}r_,
0 ’ is that writing such codes needs a decent knowledge of specific

where bothj)) and E” are series if\. The Schrédinger equation OPtimization techniques; here: the memoization of lazy recursive

becomes calls. 5
The program below generates reasonably”fasindreds of

E'|0) — <N — Eo — /\E’> [) = H'|0) + AH'|[¢)) . (10) terms, and finally breaks because of overflows, since the series are
divergent (30 terms yield numbers of the order16f®. We can

We are allowed to choose the normalizatigi®}¥) = 1, which rescalet, but no factor con$tcan prevent the explosion. We could
implies the orthogonality0|v)) = 0. This, after having written the ~ use Euler or other resumming techniques, whose lazy implementa-
scalar product of (10) witi0|, and(k| for k # 0, gives us: tion can be found in [20], but we shall not do this here).
E = (0\H’|0) + A(0|ﬁ/|¢> , (11) psi k | k>=0 = Ipsi!l(frominteger k)
o 1 Pl Pl 5some seconds; after 100 terms on a popular platform (a PC) the delays become
ko) = —g—py e (HA10 - AEHE)12 e

| otherwise = 0
Ipsi = 0 : ps 1 where
ps k = ((elmat k 0 :>

sumfelmat kK m * psi m |
m<-[k-4,k-2 .. k+4]])/
(negate(frominteger k):>ep)):ps(k+1)

We have in a most straightforward way defined the infinite list
Ipsi = [psi O, psi 1, psi 2, ..] where eaclpsi
mrecurs indirectly, passing through the elements storddsin .
Note that the program remains co-recursive without any special
cosmeticspsi does not verifywhether the needed element has
been already calculated, in order to retrieve its value!

Many othersimple and goodptimizations are possible. We
could have tabularized thg:|H’|m) matrix elements; we don't
really needket s, everything could be computed directly witk
k) and axes; the structure 6f could have been simplified, we

In several papers devoted to the quantum computing this is the end
of the story; the model gives us the probabilities, they are numbers,
and we may stop here. If we decide to go further, the remaining
part of the story is a “normal”, classical (albeit non-deterministic)
computation: we use some random number generator in order to
generate the instances of the concrete classical configurations, ac-
cording to the prescribed probabilities.

No model can do more than that. This means that in order to
get some results methodologically meaningful, we must repeat the
simulated experience many times. Unless we are absolutely sure
that the result of a quantum process is either a valtieot “ |”,
and not an arbitrary superposition thereofie individual expe-
rience conveys almost no information. This means that we must
operate from the beginning on ensembles of many identically pre-
pared quantum systems, and to use a random numer generator many
times, in order to gather a meaningful statistics. On the other hand,
all serious algorithms in quantum computing are designed to gen-

never need complex numbers, etc. But our point was that evenerate a “settled”, or “committed” states corresponding to classical

without those conscious technical improvements, the formalism is
perfectly usable on a very small computer.

3 Measuring

Typical theorists in computer science who “dare” to touch quan-
tum problems, usually have no particular problems with the under-
lying algebra. There is, however, in our opinion, one weak point in

configurations, and not to arbitrary superpositions thereof. In such
a wayonemeasurement should provide a definite (and definitive)
answer.

Our package uses random number generators to pragtce
bitrary discrete distributions, and it works even in the case of in-
finitely dimensional bases, provided that the probability amplitudes
vanish sufficiently fast. We know e.g., that the coherent state of an
oscillator|z), wherez is a complex number, which can be used to

several popu|ar presentations and simulations (e_g.’ [21]) of quan- model a |aser, giVeS the Poisson distribution for the excitation lev-

tum circuits and other aspects of quantum computing: the notion €ls (or the number of quantay,, = |(n|z)

of measuremenis often treated in a littlecavalier way, usually
sufficient for computing, and for the complexity analysis, but not

[(nl2)|* = u"/nlexp(—p),
wherey = |z|?, andn can be arbitrarily large. Yet, if the total

energy of the system is limited, the average excitation lgvsinot

always very good for the comprehension. In classical theories the SO big either, and standard techniques of generating Poisson distri-
measurement is an issue belonging to the domain of experiment,butions, e.g., [24] tell us how to measure our system.

and to epistemology; a theorist may joyfully analyze the Turing or
RAM machines, and re-use at will all the information specified by
a given configuration (the state) of the machine.

In a quantum system any attempt to find out the information
hidden in an unknown state will destroy it. Thus, this measur-
ing procesanust be includedh the theoretical model of a quan-
tum system and of the information flow therein, if it is to be com-

plete enough so as to deserve the name of ‘simulation’. If one be-
gins with concrete bit matrices which may be regarded, copied and

transformed at will, the model is already “too classical”. ..
As we know, an unknown quantum state cannot be copied
(“cloned”) [22], so it is not possible to get around the difficulty

imposed by the active role of measurement by producing the sys-
tem duplicate, destroy it by the observation, and then do something

more clever with the original.

The presented functional formalism attempts to comply with
this restrictions, in the sense that we do not try to “cheat”, to ex-
ploit any information to which we have no “legal” access, although
classical computer programs have no intrinsic morality.

3.1 Final computed results

As long as we stay within the quantum framewoak, measure-

ments (generation of numerical results) reduce themselves to com-

puting of the mean values ofAsome self-adjoint operatan a state
|4), which is denoted byi)|A|y). In the example in the former
section, (2.5), we computed the energy|N|n). One reads of-

3.2 Mixed states and density matrices

To be completed

4 Construction of Composite Systems

4.1 From Cartesian to tensor products

The construction of a classical system with many degrees of free-
dom, such as two rotators, or an oscillating particle with spin, is
based on the simple set product: the system state is described, say,
by a two-valued variabland with its excitation level. In general,

we can — in principle — build a compourtbase using the carte-

sian product constructor:

Q Qubit | O Oscil | ...
| CP Qbase Qbase

data Qbase

instance Num s => Hbase Qbase s where
bracket (Q x) (Q vy) bracket x y
bracket (O x) (O y) = bracket x y

bracket (CP x a) (CP y b) =
bracket x y * bracket a b
bracket _ _ =0 -- Incompatible

In this caseaxis remains a linear operator, and it is possible to

ten that the quantum measurements give us the probabilities of thedefine the lineatensor produc{ ><) of two axes by

componentsa) found in a given state, but this — according to (2)
— is also an average of a self-adjoint operator, of a projector:

)l = (] (Jad{al) 1) (15)

infixl 7 <*>
(axl <*> ax2) (CP a b)
axl a *ax2 b

Forget it!

Of course, this requires thatxl and ax2 are functions over The tensor product of states is an “irreversible operation” in the
Qbase, and not on individual bases for the qubit, the rotator, etc. sense that in general it is not possible to extract trivially one sub-
This cascading tags may be a little clumsy, but this is not the worst system, although by performing a partial measurement (applying
problem: in fact, amalgamating the attributes of the subsystemsthe vector to an incomplete set of Hbase arguments), the arity of
within a composite data structu@P ... from the quantum point the state is reduced. But the result is (usually) not normalized, and
of view is a construction of the direct sum of the component Hilbert needs thus some re-interpretation. If a given bi- or multi-system
spaces, and ha® physical meaninglt is a purely formal, artifi- state is not a single tensor product but a sum thereof, for example
cial construct, without any priori mathematical properties, but if |¢) = %(|0>|0) — |1)|1)), then this extraction of a single sub-
with too strongstructural properties: in principle it is possible to systemis not possible at alithout destroying the quantum struc-
disentangle a part of such a structure (one subystem) by an approture of the state. We say that the two subsystem=atangled
priate partial selector. In a quantum world this is impossible; this is They constitute a whole, even if the two subsystems are separated
the very essence of the Einstein-Rosen-Podolski paradox. in space by a large distance. This is a conceptual problem which
The main proposition in this section, considered a common has been discussed thousands times, we shall not pursue this topic,
truth in quantum physics is: the joint quantum state of two inde- we want only to signal that a simulator of a quantum system cannot
pendent systems is their tensor product. For a modern discussiorbe modularized into small, local units, each dealing with a small

of this issue see [23], but the book [15] (and many, many others) |ocal sector of the global state.

provides a complete discussion of the related mathematics. The

formulae above, definin@base and the product of axasill not
be used at all'land we start from the beginning. We leave the axes
as they have been defined in the section (2.1).

If a ket is a linear function defined on axes, a tensor prod-
uct of two (or more) kets is a bi-linear (multi-linear) functions
of two or more axes: iktl = \ax -> ktfl; kt2 = \ax
-> ktf2 ,thenktl<*>kt2 = \ax1l ax2 -> ktf1*ktf2 ,
and this should be appropriately generalized to multi-linear forms.

In general, knowing that our functions will need many argu-

ments, it is good to define more general Vector Space instances,

e.g..

instance (Vspace b) => Vspace (a->b)
where
vZero v = vZero
f<t>g=W%->fx <+>g X
f<>g=W%->1fx<>gx
@*>fx=a*»(fx

This is true foranycomputer model of a quantum system. Does
the functional programming have any advantages wrt. modelling
approaches which use bit strings and complex arrays? Our answer
is: yes. The laziness permits to keep relatively large tensor prod-
ucts in a semi-developed form, and facilitates the implementation
of Bennet tricks [25] which reverse the computation flow in order
to get rid of the auxiliary garbage. These investigations will be
presented in a forthcoming work.

4.2 Dual tensors

This section is very short. First, if we want to constralementary
two- (or more, but practically restricted to few) sub-systems, say,
|0)|1), we don’t need to apply explicitly the tensor product of single
kets, we may start with multilinear primitives, e.g.,

ket_p alpha beta = \axl ax2 ->
(conj ax1 alpha)*(conj ax2 beta)

Passing from such kets, or from any combinations thereof to axes

where the lifted arithmetic operations are defined recursively. The is trivial, the answer is

tensors are defined with the aid of the outer multiplication oper-
ator (<*>) , and they need seriously the multi-parametric classes
with functional dependencies in order to be suficiently universal,

but concrete enough so that the user doesn’t need to put concrete

type signatures everywhere. We define

class Tensor vl v2 v3
where
(<*>) =

| v1 v2 -> v3

vl -> v2 -> v3

(dual_p ktp) alpha beta
ktp (axis alpha) (axis beta)

and we see that a compound axis is also a bilinear function, and
doesn’t involve any “classical” Cartesian product of the associated
Hbase labels. The norm of such a (ket) vector forGubit sys-

tem is given thus by

norm2_p ktp = axnorm2_p (dual_p kt2)

where the functional dependency means the obvious, that the typewhere

of (p+ q)-linear tensors can be deduced from phandg-linearity
of the factors. Scalars are natural tensors:

instance Tensor Scalar v v
where
S <*>vVv =85 *>v

and the most important recursive type constraint is

instance (Tensor vl v2 v3)
=> Tensor (a->vl) v2 (a->Vv3)
where
u <*>v

X > u x <> v

S0, now we can construeket = ket BO <*> ket B1 ,and

use it in our calculations. Itis possible to prove that the tensor prod-
uct is associative, although obviously non-commutative. In mathe-
matical notation instead d¢f)) ® |¢) we will write simply |¢)|¢),

or [¢; ¢).

10

axnorm2_p ax2
abs2(ax2 BO B0O) + abs2(ax2 BO B1)
+ abs2(ax2 B1 BO) + abs2(ax2 Bl B1)

4.3 Operators on tensor product states

We shall define now the tensor product of operators. Mathemat-
ically the tensor product ofi; which acts onj¢/;), and A, con-
cerned with the second subsystem, is the opetdtop A, whose
semantics is the following:

A @ Ao (o) ® [vo)) = (Ailn) @ (Aalita)) (26)
The implementation seems quite complicated, especially if we
think already that the vectors which will be processed directly by

the functionals defined in the program are in fact co-vectors (axes);
we will have to boost multi-linear functions.

?7?

Figure 4: Operator on a composite state

In different words: we have a set of “input”, and a set of “out-
put lines”, like on Fig. 4, and we have to constraste object
which performs this transformation. It is interesting to observe that
when we define such transformation acting on kets, (single kets
which are tensorial, i.e., multilinear), the argument of the operator
provides structurally a “continuation”, and the composition of such
operators is stylistically similar to the CPS programming, which —
as we know — is able to deal with multiple arguments-to-multiple
results functions.

Constructing the product of two operators is straightforward:

boost2 apl ap2 ktp
\axl ax2 -> ktp (apl axl) (ap2 ax2)

whereapl andap2 are operators acting on single axes, &t
is a 2-ket. Such factorized object can be depicted as on Fig. 5.

Ay

A

Ay

Figure 5: Tensor product of operators

The recursive construction of N-argument operators may follow the
recipe similar to this used already for kets, but now we are in a
different situation: the arguments of our operators are linear func-
tionals themselves. The construction of the tensor product (acting
on kets) of two linear (one-argument) operators (acting on axes) is

easy, and shown above. Suppose now that we have two operators

acting on kets, one of them is elementary, and the other — multi-
linear:

op kt = \x -> kt (ap x)

opm ktm = \yl y2 ... ym ->
ktm (bpl y) (bp2 y) ... (bpm y)

(where lack of indices on in (bpk y) suggests that the corre-
sponding operator may depend effectively on many arguments; it is
not necessarily a tensor product).

The producbpp = op <*> opm will have as its specifica-
tion the following pattern:

opp ktp = X y1 ... ym ->
ktp (ap x) (bpl y) ... (bpm y)

This can be reduced to:

opp ktp = X -> opm (ktp (ap X))
op (opm . kip)

or, simply: opp = (op .) (opm .) . Unfortunately, when
the left argument of the tensor product is multilinear itself, the

11

formula gets more complicatedop2 <*> opm = (op2 .)
(opm)) , op3 <*> opm = (op3 .) (((opm
Do)) , etc. We have to construct a recursive generator for
such types in a general case.
To be completed. Stuck. ..

5 Quantum Circuits

5.1 Some elementary gates

We have seen already some “gates” (operators) on single qubits,
such as the negation. From the Pauli matrices we can construct
the rotations, phase shifts, etc., but in order to be abt®topute

it is necessary to have some multi-bit, or rather multi-qubit oper-
ators, and some generic mechanisms to compose them. Good, we
know already how to make tensor products, and we know that the
operators form a vector space, so we can combine them linearly.

The basic, anery strong requirement imposed on those gates
is their unitarity: AT = A~', which implies reversibility. This
means that a classical gate, say NAND which combines two bits-
arguments in one-bit result is an illegal operator, it does not corre-
spond to a physical evolution of a quantum system.

Thus, one can read sometimes that a legal operator must have
the same number of input and output lines. This is a trivialization
of the problem, of course there are legal quantum processes which
create or annihilate particles, everything depends on the internal
structure of these “lines”. For very simple systems, such as qubits
realized as flipping spins/2, the statement is true because of the
conservation laws.

But for computing purposes even a 1-to-1 process, a 1-bit func-
tion f(x) may be illegal if it is not reversible. It has been shown
(see e.g., [4]) that by adding extra “ballast” lines with the extra data
frozen, all functions may be converted to bijections. For example,
in order to construct an equivalent of a XOR gate, we add one out-
put line, which copies one input. The result, whose standard graph-
ical form is depicted on Fig. (6) is called the “controlled-NOT”
gate, corresponds to the transitidm)|y) — |z)|z @ y), and has

|z)

<&

A

ly)

Figure 6: Controlled-not gate

the following definition:

cnot kt x y = p BO + p B1 where
p b = kt (gproj x b) (xor (axis b) y)
xor r r BO *> id <+> r B1 *> gnot
gproj X b = x b *> axis b

Notice that the gate performs a measurement (filtering), since it
splits the state explicitly into two projections. It is not possible to
avoid this. In the next section, (5.2) we add some comment to it.

5.2 Example: Deutsch problem

One of the simplest algorithms specific to quantum processing is
the solution of a toy problem proposed by Deutsch. Given an un-
known one-bit functionf(x) find as fast as possible whether the
function is constantf(0) = f(1), or not. Classically it requires
two measurements. But if we manage to convert this function into a

guantum operator, it may be applied to aparticular superposition of fmut = id
stateg0) and|1), and return some answer in one step. (Of course, fcst = const BO
this will need some filtering, but we have already accepted the fact
that on genuine quantum systems it takes no time; the “two elemen-
tary applications” are executed in parallel. In our simulated model ;41 = (had <*> had) (ket BO <*> ket B1)
obviously we won't obtain anything miraculous.

and the circuit is represented by the following construction:

had <*> id

First, we will generalize the controlled-NOT gate to the opera- pgq g =
tor xout = had_a (fcnot fmut inl)
lz)y) — |z)|f(z) ®y) 17) yout = had_a (fcnot fcst inl)
fcnot f k x y = p BO + p Bl where It suffices to measure those last states in order to find that if we
p b =k (gproj x b) (xor (axis (f b)) y) freeze arbitrarily the second qubit (or if we average over it, which

does not change anything), then the reduced state is proportional
either to|0) or to|1).

In this introductory paper we cannot show more elaborate ex-
amples, nor show how the laziness helps to deal with long qubit

This is the central processing module within the circuit which
solves the entire problem, and which is shown on Fig. (7). Two

— g f H j——|0) sequences, but we believe that the overall flavour of the proposed
meas. framework is already sufficiently visible.
scratch -
< & H 1) 6 Conlusions

. in a nutshell: It is difficult to say when (if at all) we will have
working quantum computers. We are nevertheless convinced that
the paradigms of functional programming constitute a sound basis
for their modelling, understanding, and also, in some possible fu-
ture — their programming. The main purpose of this paper is to
convince also the reader, by showing some simple, but not entirely
trivial examples.

In this, preliminary work, we propose an abstract geometric
framework permitting to define standard quantum entities such
(10) +11)) ([0) — [1})) (18) as states and observables, as functional objects, programmed in

Haskell. The level of abstraction is so high that we can offer a
(10;0) —10;1) + |1;0) — |151)) . (19) common style for the simulation of very different quantum sys-

tems, and yet propose a set of effective algorithm implementations,
The central module applies the functign If it is constant, say permitting to obtain some non-trivial numerical results. Moreover,

Figure 7: Deutsch problem
assigned input lines{0) and|1) are processed first by Hadamard

transforms (the tensor products thereof, of course, as shown).
This part of the circuit takes the input into the combination

o —

N~ N~

f(x) = 0 for all z, the state changes into this genericity makes it more difficult to introduce errors in the pro-
gram.
1,))) The mathematics used in standard quantum calculus is rather
Y (10;0) = 10;1) +1;0) — [1;1)) different from what one finds in a typical text on the theory of pro-
1 gramming, so we have been annoyingly explicit in defining our vec-
= 3 10y +11)) (10) — 1)) , (20) tor bases, tensor products, etc. We believe, and we wanted to show
that a modern, strongly typed and polymorphic functional language
and if f is, say the identity, then we will obtain is actually the best tool for the implementation of those objects, al-
) though the Haskell type system is still not perfect for our purposes.
2(10:-0) — |0 1N — - This work will continue.
= 5 (0:0) = 10;1) +[1;1) — [1;0))
= % 0y — 1)) (J0) — |1)) . (21) 7 Acknowledgements

We thank Jan Skilbiski for interesting discussions during the pre-

In both cases thiwwer line remains the same, but the uppeline = ; .
liminary work on this subject.

changes in a particular way. If we apply it (the lower line is
scratched) the Hadamard transform again,ffaonst the outcome
is proportional tg0), and for the other case +8). References

We can show the coding, but first a few words about the non-
chalance of this derivation. What kind of mathematical object rep- [1] S. Brandt, H.-D. DahmenQuantum Mechanics on the Per-
resentsf(z) in (17)? Is it a state description, suggested by its pres- sonal ComputerSpringer, (1994).
ence in a ket? Or a number 0 or 1, used numerically? Remarkably,
in several introductory articles this problem is never explicited, the
authors put or extract numbers into, or out of kets without any com-

ments. It is possible, because they didn't try to implement states in [3] G.W. Mackey, Mathematical Foundations of Quantum Me-

[2] John Von NeumannMathematical Foundations of Quantum
MechanicsPrinceton University Press, Princeton (1955).

anabstractway, as we did. Actually the functiofi cannotbe an chanics Benjamin, New York (1963).
operator on general quantum states, it can do something only to a
classical configuration, not to a superposition. [4] John Preskill,Quantum Information and Computatiohec-
In our framework the situation is absolutely cleah,: ture Notes for Physics 229, California Institute of Technology,
Qubit -> Qubit . We define two such objects: (1988).

12

(3]

(6]

(7]

(8]

El

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

[21]

[22]

Julia Wallace,Quantum Computer Simulation - A Review;
ver. 2.0 Univ. of Exeter tech. report, (1999), see also the site
www.dcs.ex.ac.uk/~jwallace/simtable.html ,
(2002).

Peter ShorAlgorithms for quantum computation: discrete
logarithms and factoringProc. Symp. on Fundamentals of
Computer Science, Los Alamitos, IEEE Press, (1994), pp.
124-134.

D.S. Abrams, S. LloydQuantum algorithm providing and
exponential speed increase in finding eigenvectors and eigen-
values Phys. Rev. Lett83, (1999), pp. 5162-5165.

L.K. Grover, Quantum Mechanics Helps In Searching For a
Needle in a HaystagkPhys. Rev. Lett79, (1997), p. 325.
Also: L.K. Grover,A fast quantum mechanical algorithm for
database searctProc. 28th ACM Symp. on Theory of Com-
putation, (1996), p. 212.

Richard P. Feynmar§imulating physics with computetst.
J. Theor. Phy=21, (1982), pp. 467-488.

B.M. Boghosian, W. TaylorSimulating quantum mechanics
on a quantum computefnline preprint quant-ph/9701019,
(1997).

D.G. Cory, et al.Quantum Simulations on a Quantum Com-
puter, Phys. Rev. Lett82, (1999), pp. 5381-5384.

C. Zalka, C Efficient simulation of quantum systems by quan-
tum computersOnline preprint quant-ph/9603026, (1996).

D. Deutsch,Quantum theory, the Church-Turing principle
and the universal quantum computd®roc. R. Soc. Lond.
A400, (1985), p. 96.

S. Lloyd, Universal Quantum SimulatorsScience 273
(1996), pp. 1073-1078.

Daniel Kastler|ntroduction a I'électrodynamique quantique
Dunod, Paris, (1960).

John PreskillQuantum Computing, pro and coRroc. Royal
Society, LondA 454, (1998), pp. 469-486.

Jerzy KarczmarczukGenerating power of Lazy Semantics
Theor. Comp. Scienck87, (1997), pp. 203-219.

Jerzy Karczmarczulgunctional Differentiation of Computer
Programs Higher-Order Symbolic Computatiodd, (2001),
pp. 35-57.

R.M. Corless, D.J. Jeffrey, M.B. Monagan, Pratibhap Per-
turbation Calculations Using Large Expression Management
J. Symb. ComputatioB3, (1997), pp. 427-443.

Jerzy KarczmarczukJraitement paresseux et optimisation
des suites numériqugBroc. Journées Francophones des Lan-
gages Applicatifs, JFLA0O, (2000), pp. 17-30.

for
from

Formalism
available

Bernhard Omer, Procedural
Quantum Computing (1998),
http://tph.tuwien.ac.at/~oemer

W.K. Wootters, W.H. Zurek A single quantum cannot be
cloned Nature299, (1982), p. 802.

13

[23] Diederik Aerts, Ingrid Daubechie®hysical justification for
using the tensor product to describe two quantum systems as
one joint systenHelvetica Physica Act&l, (1978), pp. 661—
675.

[24] Donald E. Knuth,The Art of Computer Programming, vol.
2: Seminumerical AlgorithmsAddison-Wesley, Reading,

(1981).

C. H. Bennet, IBM J. Res. Develof7, (1973), p. 525. See
also C. H. Bennet, SIAM J.CompLi8, (1989), p. 766.

[25]

[26] Mark P. Jones,Type Classes with Functional Dependen-
cies Proc. of the 9-th European Conf. on Programming,

ESOP’2000, Springer LNC$782 Berlin, (2000).

A Multi-parametric classes

A ‘class of types’ in Haskell is a constraint, a relation fulfilled by
the types which will be declared as its instances; the class says
that its types-instances have some properties ensured by the exis-
tence of some polymorphic functions (class members). There is
no conceptual obstacle that a class bind two or more types. Such
multi-parametric classes are heavily used in our framework. First
of all, it would be extremely rigid basing all the vector spaces in-
volved, on the same type of scalars. Usually we use complexes, but
for testing we can often forget about phases and use reals. In our
semi-symbolic exercises we have used infinite power series, or infi-
nite sequences belonging to a differential algebra, which permitted
the implementation of the automatic differentiation algorithm.

So, we shall define more general vector spaces. Some elements
remain, for example

class Vspace v
where
(<+>) =t v->v ->v

needs no modification since no scalars are visible here. We have
separated the multiplication by scalars to a different class

class Module v s
where

*>)

wherev is the type of vectors, ansl denotes the type of the as-
sociated scalars. This class has instances in the scalar domains,
where(*>) reduces tq*) , and the recursive, already mentioned

in the text (2.3) clause permitting to lift the multiplication to the
functional domain is:

LS >V >V

instance (Module b s) => Module (a->b) s
where
a*»f)x=a*»(fx

A.1 Functional dependencies

Such type framework is too ambiguous. The Haskell type system
forces us to declare practically everything, and often is not able to
deduce the instance of the Module class. We used thus the fact that
if the type which describes vectors is known, obviously its field
of scalars is known as well. The augmented type system, which
permits to the compiler the resolution of some ambiguities has been
described in [26], and has been implemented in Glasgow Haskell.
The trueModule definition is

class Module v s | v->s

which means that the type is uniquely determined by the type serinteg ¢ u = ¢ :> snt 1 u where
v. Our framework is much more polymorphic now. Unfortunately, snt n (u0:>uq) =

although in principle it doesn’t seem necessary, we were obligedto (uO/frominteger n) :> snt (n+1) uq
define the instances for each scalar field separately:

exp u@(uo:>uq) = w where

instance Module Double Double w = serinteg (exp u0) (serDiff u*w)

where

X >y =x*y becomes effective. Our package contains procedures for the series
instance Module Cmplx Cmplx composition, reversal, etc., but we will not need them here.

where

X*™>y=x*y L .
C Lazy Automatic Differentiation

etc., since the attempt to declare the constrained general numerical

instance This section contains a very small fragment of the paper [18]. We

shall describe the lifting of numerical expressions within a pro-

gram into a domain where a non-trividerivation operationdf

where is defined. All numerical expressions can be composed from el-
X*>y=x*y ementary arithmetic operations (and some built-in functions with

fails. For similar reasons which we cannot analyze, the tensor Known properties). For simplicity we describe a 1-dimensional

instance (Num s) => Module s s

generic instance for numerical scalars: case, where there is a sense in saying that we b_as@ariable":
it may be the argument of a function whose derivative we want to
instance (Num s,Module v s) => Tensor s v v compute; it is identifiable in the program, but it has no specific
where name. Its main property is that its first derivative is equal to 1, and
§ <>V =85>V all higher derivatives vanish.

The program contains also some numbercofistantsvhose

doesntwork either. The concrete specifications: derivatives vanish. All “standard” expressions, sayare lifted

instance (Module v Cmplx)=>Tensor Cmplx v v to the domain of infinite sequences= ¢, » ¢, wheree is the
where “main value”, the value of the original expression, ane- e; »
S <*>v =s§ *™>y ez » e3 » ..., with right-associativae>, represents the tower of all

. derivatives ofe. In Haskell we define the following structure:
and for other scalarsDouble , Series Cmplx etc., work rea- 9

sonably well. It seems thus that our attempt to use Haskell in an ab-class Diff a where
stract geometric context shows a usefulness of a possible strenght- df :: a->a
ening of its actual type system.
instance Diff Double where

B Lazy Infinite Series df _ =00
Here, and in the next section (C) we just show how these “semi-)))
numeric”, composite data structures are defined, and how to con-data Dif a = Cst a | Dif a (Dif a)
struct the arithmetics over them. The details are in [17]. instance Num a=>Diff (Dif a) where
Suppose that a pair = 3“0 > @) denotes the infinite power df (Cst) = Cst O
seriesu = uo + w1z + uax? + - - -; obviouslyw is its tail u; + df (Dif _ p) = p
u2x+- - -. The dummy (formal) variable does not figure explicitly
anywhere, and the Haskell name feris (:>) . Structurally such
a sequence is equivalent to a &0, u1,...]. Adding series is
performed termwise by a generalizeigWith operation, which
needs no comments.
The multiplicationw = wv of u = (uo >) by v = (vo > V)
is equal to:

where the varian€st x is a natural optimization of — otherwise
unavoidable — infinite chaiif x (Dif 0 (Dif 0 (Dif

) . The expressioDif e0 de is the Haskell representa-
tion of ey B €.

If the user writes a numerical procedure in which all the op-
erations and functions are sufficiently polymorphic: not restricted
to Doubles etc., but overloadable to, sapjf Double , then

w=(wo >w), where wy=uvo; W =uv+uv. (22) it suffices to replace all implied constantby Cst ¢ (all explicit

numeric constants are lifted automatically by spedificinte-

The divisionw = u/v, whose algorithm which uses indexed vec- ger etc; converters), and theariable x by dvVar x = Dif x

tors, given e.g., in [24] is not so short, in a co-recursive formulation 1. TheDif datatype is an instance of all needed numeric classes.

becomes extremely compact. From the identity= wv we see The lifted expressions are added or subtracted term by term, as

immediately the validity of in the case of series. The Leibniz identity which must be satisfied

by a decent derivation operator results in the following recipe for

the multiplication ofe = eq » e by f = fo » f:

Elementary functions, such as the exponential, pass through the . - -
differential identities (withz being the differentiation variable) ful- eQeo » &) - fQ(fo > f) =eoforef +ef (24)
filled by such series. Fromy = exp(u) we deducew’ = wu/,
andw = wo + [wu'. But the differentiation of a series is just a
multiplication term-wise of its tail by the sequen¢g, 2,3, ...}.

The integration divides the argument by this sequence, but puts in

front the new 0" term — the integration constant. This makes the ~ = ~ =
co-recursion possible, and this dgefinition eQ(eo » &)/ fQ(fo > f) =eo/fow (¢/f—e-f/(f f)), (25)

wo = uo/vo; w = (u—wov) /v. (23)

The division, and some elementary functions given below, are
equally easy. (We omitted the trivial definitions involving fBst
sector.)

14

and

exp(e@(eg » €)) = r where
r = exp(eo)»é-r, (26)

Veow é = p where
p = Veir (0.5-8)/p, (27)
atan(eQ(ep » €)) = atan(eg) » €/(1+e-€), (28)

etc. All expressions belong thus to the lifted domain, and in order
to retrieve their main values, we apply the functidvial (Dif

X _) = x . All derivatives are available “for free”. As we have
seen in the example in section (2.5), sometimes we don'’t need the
values of the derivatives in the final output, but we use them during
the calculations, e.g., to solve differential recurrences. The compu-
tations in quantum mechanics use them very frequently.

15

