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Abstract

We present a framework for specifying and solving computational
problems in standard quantum mechanics using the purely func-
tional, lazy language Haskell. We insist on a fairly high abstraction
level; quantum states and operators are opaque functional objects,
and their semantics is defined — as far as possible — independently
of their concrete representations (the chosen base in the concerned
Hilbert space). We show how to construct effectively the states for
composed systems, and we present a toy model of quantum circuit
toolbox. We exploit laziness in order to show how some perturba-
tional algorithms become incredibly compact, yet effective.

This is a preliminary, incomplete draft, just for friends, and for
my own assessment of what works, what is wrong, where are my
technical problems, and what do I really want!
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Operators, Quantum gates, Perturbations, Automatic Differentia-
tion, Lazy Programming, Multi-parametric Classes.

1 Introduction to Quantization

1.1 Quantum world is “abstract”, thus functional

Despite the huge amount of code written and used by physicists,
quantum mechanics is notoriously difficult tomodelon a computer.
By models we mean here programs which operate upon “objects”,
with “physical” attributes (position, speed, etc.), with equations of
motion resulting from some local dynamics of the system, some-
times with explicit probability distributions, but in other cases with
statistical properties resulting from the chaotic dynamics, etc. This
“realistic” simulation approach is rarely exploited within the do-
main of quantum physics. Yes, we can solve the Schrödinger equa-
tion, perform symbolically some awful perturbation expansions, vi-
sualize some interference patterns or diagonalize some matrices.
We can even do it at home, using some popular numeric and vi-
sualisation software [1]. Still, we don’t know really how to ‘put a
quantum system into a computer’ in a methodologically sound and
intuitive framework, although all the relevant mathematical princi-
ples have stabilized many years ago, see [2, 3], and several other
books with similar titles.

With the advent of “quantum computing” theory, see e.g., [4],
and the elaboration of algorithms based on information transmis-
sion by quantum structures: quantum cryptography, teleporting,
factorization of huge integers, etc., the recognition of this difficulty
reached the realm of computer science, and favorized a somehow
formalistic approach to the description of quantum systems. Re-
searchers underline the massive parallelism of quantum algorithms,

the exponential dependence of the number of states on the size of
the system, the decoherence problems, etc. very hard technicalities.

But some deep, conceptual problems remain. The theory gives
us statistical predictions only, but a simulation approach is based
on the implementation of individual, unitary systems. The intrin-
sic non-determinism (and later the non-locality, and other episte-
mologic monstruosities. . . ) makes the whole domain difficult to
model in a naïve way.

Moreover, our representation of the quantum world is inher-
ently abstract. Numeric quantum codes are used to diagonalize
matrices, or to solve the Schrödinger equation, but neither concrete
operators: matrices or differential ops, nor wave functions in space
represent physical objects; they are just concrete representations of
quantum “observables”, and of thestate, which isnot directly mea-
surable, but which is necessary in order to measure the physical
properties of the system. In this sense, all “classical” simulations
of quantum discrete systems (see e.g. the review [5]), i.e. collec-
tions of qubits, using vectors of bits and of complex numbers, are
methodologically a little flawed. We think that a more abstract, yet
practical formalism would be useful, mainly for our understanding,
but also forpracticalpurposes.

We shall attempt to code those abstractions using a functional
language Haskell. We refuse to touch any philosophical issues in
this text, the semantics of the word “abstraction” is comparable to
many other similar categories of meaning in computer science: a
concrete vector is a collection of components, a “classical” data
structure. An abstract vector is an entity which is independent of
the coordinate system which would specify those components, it is
a geometric entity, not a concrete data structure. An abstract opera-
tor acts on, and transforms abstract vectors. They will be functional
objects, but we shall not pursue the object-oriented methodology in
this paper ; the relation between the OO programming and math-
ematical abstractions is still a little problematic. At any rate, an
abstract vector will be a functional object which is concretized by
its action on a coordinate frame. So, obviously, the entities we play
with, are also some concrete representations, but, as the reader will
see soon, their generality is incomparable with the usage of stan-
dard matrices.

1.2 Aims and contents of this work

This is not a “Quantum Computing” paper, although some exam-
ples of quantum information processing are provided. We present a
small set of programming tools, coded in Haskell, permitting to ma-
nipulate formal quantum structures at the level comparable to stan-
dard student textbooks on quantum theory, and, as we said above,
we insist on keeping the genericity of the formalism as high as pos-
sible. A good deal of the transformations between introduced en-



tities is based on theuniversal properties(in the categorical sense)
of their mathematical contents.So, our main target is the teach-
ing, and comprehension of formal quantum-mechanical calculi
assisteddirectlyby a computer.

In a sense we develop a “symbolic” computation package us-
ing a functional language, but we underline the fact that we do not
processs any symbols, but objects specified through their mathe-
matical, operational properties. Those properties are introduced,
and coded in a minimalistic way. One of main ambitions of this
work is a peculiar methodologic honesty: the programming frame-
work does not encourage the user to “cheat”: if something cannot
be measured or copied, then it cannot. We shall not confuse ab-
stract entities, such as the labels chosen for the basic vectors in a
Hilbert space, and integer numbers: 0, 1 etc., which can be ma-
nipulated arithmetically. Readers acquainted with the functional
programming shall see some parallels between those quantum con-
straints, and the fact that one cannot copy or analyze the structure
of a functional object. These analogies don’t seem to be accidental.

We don’t want to restrict our attention to notorious qubits. In
our opinion this is an annoying fault of many introductory texts
devoted to quantum computing: computer science-oriented read-
ers who see just one, concrete model of one physical system have
often severe problems with the understanding of common, under-
lying laws, and with the recognition of many isomorphisms and
particularities which are natural for people formed as physicists. A
qubit in an ion trap is very different from a qubit implemented as
a polarized photon. Thus, we shall begin with a whole big class of
potential physical systems. If in some future we will have to model
real, physical quantum circuits, we shall not escape from the ne-
cessity of analyzing their interaction with the environment, and the
qubits will not provide a complete description of the system any-
way. Moreover, although the career of the Quantum Computing do-
main among computer scientists is due to such “pure algorithms” as
the Shor factorization algorithm [6], see also [7, 8], we believe that
technicallymuchmore important will be the work on simulation of
general, different quantum system on quantum computers, as noted
already by Feynman[9, 10, 11, 12], since this is badly needed by
all modern technology. The same attitude has been expressed by
Preskill [16]. This means that we shall need some sound frame-
work for a universalquantum computer, universal not only in the
formal sense, like the Turing machine, but able to model more or
less seriously other quantum systems[13, 14], which physically are
far from qubit processors.

We shall often exploit as a standard example the quantum har-
monic oscillator, whose set of states isinfinite, labelled by integers
from 0 to∞, because it provides a good test for the effectiveness
(notefficiency. . . ) of the proposed algorithms.

This presentation is by necessity rather simple and incomplete,
just an introduction to a future work. The paper is addressed to non-
physicists, although it requires some minimum of knowledge of
quantum mechanics, at least some acquaintance with the “quantum
computing folklore”, some mathematical (algebraic) generalities,
and a strong interest in this field. All information essential for our
coding will be introduced incrementally in the text, but we cannot
explain all the physics behind. We do not address the problems
of efficiency, although we recognize the importance of this issue.
A reasonably good acquaintance with the functional programming
and with the language Haskell is assumed.

1.3 Manufacturing quantum systems

A classical systemis 1 a set of observable states. A flip-flop (a
one-bit, two-level system), which later will become a Qubit, has

1from the modelling perspective; we shall not start an ontologic divagation here. . .

two states, say,Up and Down, or B0 and B1 (suggesting more
Booleans than orientation. . . ). A particle (a massive point) has a
position x and a momentum. A 3D rotator has an angular posi-
tion: two real numbers describing the (normalized) rotation axis,
and its azimuthal angle. Sometimes systems which seem identical
at a glance on these states, are not. A one-dimensional oscillator
can be described by the position and the momentum of the moving
point, exactly as a free particle. But the space topologies are very
different in both cases. The fact that for the oscillating pointx and
p arebounded, may change completely the mathematical descrip-
tion of two systems, e.g., a quantum oscillator has a discrete (Fock)
basis, labelled by the number of elementary excitation quanta; a
free particle doesn’t.

Passing to the quantum description of such systems we have to
take into acount the following:

• Each classical configuration, for exampleDown, or x, or
(θ, φ)) should be consider as alabel, a “vector index” of a
vector in a metric (Hilbert) space.This is the most important
assertion of the whole introduction.A quantum state is rep-
resented (cum grano salis; the norm is conventional, and the
global phase factor is unphysical) by such a vector. A clas-
sical state might thus be considered as aone componentof a
possibly infinitely-dimensional quantum state, but this classi-
cal state has no vector space properties attached to it, so we
prefer to treat is as an abstract label, a description of a chosen
basis.

• Some classical description elements are superfluous in a non-
trivial way. One cannot independently specify the position
and the momentum, or the axis and the azimuthal speed of
the rotator. They constitutealternative representations, or
different bases. At the present stage we don’t need to spec-
ulate about the Heisenberg relations. Just accept that we can
represent a particle either through its momentum, or through
its position, in the same sense as a spinning particle may be
represented alternatively in different coordinate frames. Of
course, conversions between those representations are possi-
ble.

We can define thus some quantum systems, e.g.

data Qubit = Up | Down
-- You may ask wrt. which axis, but don’t.2

data Mpoint = Xc Double | Pc Double
-- Free particle
data Rotator = Ang Double Double

| Jm Integer Integer
data Oscil = X Double | P Double

| N Integer

where we have invested the following knowledge:

• Each item defined at the right represents a vector “index”
space. Alternative bases are variants of these data structures.
Of course, since a particle can take an infinite number of po-
sitions, instead of enumerating them all, we use a parameter-
ized data structure. We put togetherall classical (but con-
forming to quantum restrictions) configurations, all position
vectorsor all momentum vectors for a particle.

2just to avoid a rather silly answer: ‘‘ANY’’. This is an important is-
sue, but at this level we cannot discuss the properties related to the underly-
ing spatial substrate (if it exists at all; there are plenty of bi-level quantum sys-
tems where the orientation does not play any significant role). In further exam-
ples we shall use labelsB0 and B1.
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• Note that a zero-dimensional set (finite number) of index
values implies a finite-dimensional vector space, and a one-
dimensional set of, say,X Double specifies an infinite-
dimensional (here even non-enumerable) vector space. Thus,
theQubit datatype having two instances:Up andDown, is
the foundation of a two-dimensional space with the basis vec-

tors

(
1
0

)
and

(
0
1

)
, or, using the Dirac notation:|1〉 and|0〉,

or |+〉 and|−〉, or | ↑〉 and| ↓〉, etc. A basis state vector for a
particle, denoted by|x〉 has a continuous set of components,
for x in R1. The generalization toR3 is obvious.

• For a Rotator, the dual to theangular dependency is a pair of
integers(j,m) describing the “total” angular momentum, and
its projection onanyaxis. A qubit might be implemented as
a j = 1/2,m = ±1/2 rotator (spin). A photon is a particle
with j = 1, but it can represent a qubit as well:m = ±1,
since for massless particles the valuem = 0 is excluded.

• In the last example of the harmonic oscillator, we introduced
another useful (Fock) basis, the numberk in (N k) is the
level of energy, or the excitation number (the number of
quanta), see the section (2.5). This is not the full truth, the
energy levelk in |k〉 must be non-negative, while anIn-
teger has no such restrictions, but we shall deal with such
details in another way, see the next section, (2.1).

Depending on the user needs, those bases may be freely augmented.
For the harmonic oscillator, we may introduce yet another alterna-
tive basis, say,...| Ch Complex , a complex number which
represent a so calledcoherent state— an “almost classical” wave
packet base in which any compatible quantum state can be devel-
oped as well. This is extremely important for physics, begins to
interest computer scientists, but for us it will play a secondary role.

Those data structures have no specific mathematical properties
yet, they are just labels (related to, but not identified with the basic
vectors tagged by them). We cannot add them, nor multiply them
by numbers. In order to satisfy the superposition principle, we must
define all the relevant math, making from our quantum states fully-
fledged vectors in a metric space. In order to represent compound
systems we must introduce some structuring mechanisms such as
tensor products as well.

2 Basic Programming with Quantum States

2.1 Vector structure induced by the metric

As mentioned above, the concrete “classic” configurations, sayUp
or (N 3) are labels attached to vectors forming a basis for a given
system. If the space is metric, we maypostulatethe existence of an
appropriate sesquilinear3 “scalar product” for these entities. Fol-
lowing Dirac symbolics we call this product the “bracket”. For
example, the formbracket (N j) (N k) reads in the stan-
dard notation〈j|k〉, (this order is conventional!) and it is defined
as a member of a particular type class:

class Eq a => Hbase a where
bracket :: a -> a -> Scalar
bracket j k = kdelta j k -- Kronecker

instance Hbase Qubit
instance Hbase Oscil -- etc.

3Sesquilinear: linear in one, and anti-linear in other argument,o(αx, βy) =
ᾱβo(x, y).

whereScalar is usually a complex number (Complex Dou-
ble ). In fact, the package is more parametric than described in
this paper; we give some details in the Appendix (A), but the so-
lution is not fully satisfactory because of the specificities of the
Haskell type system. The default definition of the bracket specifies
the orthogonality of the basis vectors:

kdelta a b = if a==b then 1 else 0

This holds only for discrete bases, in the continuous case we would
have the Dirac delta distribution, which is singular, and needs a
more sophisticated formal apparatus in order to put it into the com-
puter. Scalars are not numbers then, but operators, or distributions
in the Schwartz sense; this is postponed to a future work, from now
on we shall concentrate on discrete (not necessarily finite) systems.
The default bracket is not the only one, and the instances may over-
ride it, for example in theN base of theOscil system the follow-
ing holds:

bracket (N j) (N k)
| j>=0 && k>=0 = kdelta j k
| otherwise = 0

in order to eliminate all the negative excitation levels. For the ro-
tator state|j,m〉: |m| ≤ j must hold. There exist non-orthogonal
bases as well (the coherent states for an oscillator is a good ex-
ample thereof), and, as we know,bracket (X x) (P p) is
a complex exponentialexp (ipx) (in this paper the Planck con-
stant: ~ = 1). In any case the brackets must fulfil the relation
bracket a b = conjugate (bracket b a) , should be
non-degenerate (not all vanishing), and positive:bracket a a
is real,> 0. Brackets will be use as fundamental bricks for the
construction of quantum probability amplitudes.

Remarkably enough, althoughHbase has no arithmetic prop-
erties, we can easily give them tofunctionsover those “labels”,
by a known, standard construction, described in many books; our
favourite is [15]. We define some abstract addition and multipli-
cation by a scalar as members of a class which represents vec-
tor spaces, and we say that some functions whose codomain are
Scalars, make the instance of this class:

infixl 7 *>
infixl 6 <+>,<->

class Vspace v where
(<+>) :: v -> v -> v
(<->) :: v -> v -> v
(*>) :: Scalar -> v -> v

type Hvector b = b->Scalar

instance Vspace (Hvector b) where
(f <+> g) a = f a + g a
(f <-> g) a = f a - g a
(c *> f) a = c*(f a)

And now, defining a currified function overHbases

axis :: (Hbase a) => a -> a -> Scalar

axis x = bracket x

we might assume that we got a representation of our quantumbasic
adjoint states〈↑ |, 〈n|, etc. We can write

f = (2:+1)*>axis(N 3) <-> 4*>axis(N 1)
g = 0.5*>axis Up <+> (0:+2)*>axis Down
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etc. 4, so, the “axes” are full-fledged vectors. But we will need
more, they are not yetgeneralmembers of a metric space. We don’t
know how to compute scalar products involvingf or g from the
combinations above. We will need somelinear functions, the axes
are auxiliary entities which cannot be linear because theHbase has
no associated algebra. However, we see here the power of a modern
functional language, we have easily and effectively created an “ab-
straction”. x = axis (N 4) is not decomposable, we cannot
extract its only component, we can only check its value against an-
other one, by acting with it on some(N k) , say,x (N 6) , and
getting 0 or 1. This is a way the quantum elementary measuring
processes are initiated (but this “filtering”, and the construction of
a probability amplitude is yet far from obtaining a concrete experi-
mental answer).

For a computer scientist the — perhaps — most important prop-
erty of the mathematical structure imposed on the quantum states
is thatphysicallyin the addition|χ〉 = |φ〉 + |ψ〉, or the filtering,
say: |ψ〉 = 〈0|ψ〉 · |0〉 + 〈1|ψ〉 · |1〉 the two terms are evaluated
in parallel, simultaneously, and the addition takes no physical time
whatsoever! Obviously in our, or any other simulation of quantum
processes, this is simply impossible, but this is the crucial point
which distinguishes the complexity of the quantum processes from
their classical shadows.

In the next step we define the dual base “ket”s:| ↑〉, |n〉, etc., as
functions over our vector base (the axes). From now on, the term
“vector” used generically will denote both axes and kets, but more
specifically, we shall treat rather kets as vectors, and axes will be
namedco-vectors, in order not to forget the distinction between
them.

The primitive kets, dual to elementary axes are:

ket alpha ax = conj ax alpha

whereconj is the complex conjugation lifted to the functional do-
main: ((conj f) x = conjugate (f x) ). The following
test:

ax = 5.0*>axis(N 3) <-> 7.0*>axis(N 2)
kt = 9.0*>ket(N 2) <+> 2.0*>ket(N 3)
res = kt ax

givesres = −53.0, and the first stage of our construction is almost
complete.

Our abstract functional vectors have now sufficiently rich math-
ematical structure. A linear combination of elementary kets (using
<+>, <-> and*> , since kets form also aVspace ) is an arbitrary
vector|ψ〉. This is the principal face of the quantum states we shall
work with.

We shall heavily use the combinatorial notation, simplifyingf
x = g x to f=g , and exploiting the standard combinators(.)
andflip :

(f . g) x = f (g x) -- Composer
flip f a b = f b a -- ‘‘Flipper’’

So, we can write:

axis = bracket
conj = (.) conjugate
ket = flip conj

There is one ingredient missing. How to compute the scalar product
〈φ|ψ〉 of arbitrary|ψ〉 and|φ〉, and in particular the squared norm
|||ψ〉||2 = 〈ψ|ψ〉? We still don’t have arbitrary “bra”s〈 | with
the same type asaxis , and which can be considered as duals ’or

4In Haskell the expressiona:+b denotes a complex numbera + ib.

adjoints, if you wish) of kets, so they can be constructed from them,
and be their legal arguments, in order thatkt (dual kt) give
the correct answer 185. The construction is remarkably simple.
The dual to a ketkt should be an axis, a function overHbase .
The following should hold

(dual kt) alpha = kt (axis alpha) -- or:
dual kt = kt . axis

We may simplify the notation even more:

dual = boost axis -- where

boost = flip (.)

The functionalboost will be used also in the section (2.3) and
later. We can easily prove the validity of the construction: ifkt =
ket alpha is an elementary ket, then

dual kt beta = dual (ket alpha) beta
= ket alpha (axis beta)
= conjugate (axis beta alpha)
= bracket alpha beta

which is correct. The linearity does the rest.
A conscious reader may observe that the construction seems

unnecessarily complicated. For anyaxes objects〈α| and〈β| we
can compute〈α|β〉 as

〈α|β〉 =
∑

γ

〈α|γ〉〈γ|β〉 =
∑

γ

〈α|γ〉〈β|γ〉∗ , (1)

whereγ is a Hbase index. In fact, for a finite base (e.g., the
qubits), this is an effective procedure (and often the only one).
However if the base is infinite, but all theconcretely constructed
kets within the program come from finite linear combinations, our
procedure yields the result after a finite number of steps, while
the formal prescription (1) is ill-defined, and will never terminate.
Moreover, the decomposition of a quantum state in a concrete basis
from the physical point of view is not a neutral operation, it con-
stitutes a measurement; formal insertion of1 =

∑
γ |γ〉〈γ| into a

Dirac bracket is a purely theoretical trick, never done by the Nature.
Of course, we shall use it in many scientific calculi, but it should
be avoided — if possible — in thesimulationof quantum circuits,
apart from primitive gates.

The mathematical framework constructed gives a recipe for
programming the quantum probabibility amplitudes for the state
|ψ〉: 〈α|ψ〉, or the physical measurement probabilities

Pα(ψ) = |〈α|ψ〉|2 (2)

that a system whose state is|ψ〉 yields upon a measurement the re-
sult which correspond to the componentα (e.g., the spin is “down”,
or the oscillator finds itself at the ground level).

We complete this section with the introduction of one missing
object: the zero vector, not needed until now. If vectors are func-
tions, then the definition of zero is simple: it produces the scalar
zero by acting on anything. We complete the classVspace v
by: vZero :: v , and define within itsb->Scalar instance:
vZero = const 0 . It is not needed as an independent object if
the field os scalars is equipped with zero, but sometimes it is useful
for simplyfying some formulae.
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2.2 General bras and bi-dual base

It is becoming really boring, but for the simplification of some de-
riations we may need yet another space of co-vectors, this time
identified with arbitrary bras〈 |, and implemented as functions over
kets (the dual base). (Recall that axes were functions overHbases
only, and we could not use them in arbitrary scalar products, al-
though they spanned a vector space.) In order to transform a ket
into a bra, we apply the functioncoax :

coax = boost dual

Proof. A ket converted into a bra, acts on another ket producing a
scalar.

coax kt kt1 = boost dual kt kt1
= (kt . dual) kt1 = kt (dual kt1)

Exercise.Verify the sense of an alternative proposition

coax’ = flip id . dual

where id x = x is the identity function. It yieldscoax’ kt
kt1 = kt1 (dual kt) . What is wrong with it?

In particular, an elementary bra〈α| belonging to this family, may
be defined as

bra alpha = coax (ket alpha) -- or
bra = coax . ket

This construction fulfills:

(bra alpha) kt =
conjugate (kt (axis alpha))

and we may construct directly the linear combination of such bras
without passing by the auxiliary axes.

The reader should observe that we have two transformations
from the dual basis| 〉 (kets) to 〈 | of two species:dual pro-
duces axes, whilecoax yields bras. The functionalket = flip
conj itself transforms axes into bras, a simple exercise for the
reader, who might prove also that the diagram on the Fig. 1 is com-
mutative.

|ket〉 〈axis|

〈bra|

dual

ket
coax

Figure 1: From kets to bras

On the other handthere is no ‘trivial’ (universal) transformation
from arbitrary bras (including axes) to kets, the only way is the
decomposition of a bra in a concrete basis, and the reconstruction
of its dual from the coefficients. It involves thus a filtering, a part
of measurement.

2.3 Operators

An operator is a function from vectors to vectors. Linear operators
in quantum mechanics play primordial roles, some of them cor-
respond toobservables, other to symmetry transformers, and the
whole evolution in the Schrödinger picture of a quantum system is
given by a linear operator. Actually, the only thing we can do with
a quantum state, apart from computing scalar products, is to ap-
ply a linear operator to it. All quantum circuits are composition of
linear operators. All observations involve the application of some
“observable” operator.

We may begin an explicit construction of some operators, de-
parting from their action on theHbase objets, e.g., saying that(N
k) should become(N (k-1)) , etc. But the construction of func-
tionals acting on functional objects in this way, is delicate, we shall
not forget that lifting the setX of objects to a vector space Fun(X)
of functions on them is acontravariantfunctor! If we have a trans-
formationF : X → Y , then the induced operatorF ∗ is adjoint,
F ∗ : Fun(Y ) → Fun(X). This can be seen from the standard def-
inition, the pullback:(F ∗f)x = f(Fx). This is important for the
lifting of operators to the dual base.

One standard class of operators is composed out ofouter products
of vectors:|φ〉, |ψ〉 → |φ〉〈ψ|, defined as|φ〉〈ψ||χ〉 = 〈ψ|χ〉 · |φ〉.
In Haskell we get

(outer phi psi) chi = coax psi chi *> phi
-- = psi (dual chi) *> phi

One simple and useful member of yhis family is a projectorP̂α =
|α〉〈α|, whereα is an index. It may act on any vector, and it is
defined byP̂α|ψ〉 = 〈α|ψ〉 · |α〉, so its implementation is easy,
we must only decide whether we need it to act on axes, kets, or on
general bras. There are thus three possible to define within our type
system, differently typed instances of this operator, all immediate
to construct.

axproj alpha ax = ax alpha *> axis alpha

Others:

ktproj alpha kt =
kt (axis alpha) *> ket alpha

brproj alpha br =
br (ket alpha) *> bra alpha

-- = br f *> coax f where f=ket alpha

The projectors (and other operators) form a vector space, the con-
cerned class instance is

type Hmat b = Hvector b -> Hvector b
instance Vspace (Hmat b)

where
vZero v = vZero
(f <+> g) a = f a <+> g a
(f <-> g) a = f a <-> g a
(c *> f) a = c*>(f a)

and if the base is finite, they may be effectively represented as ma-
trices. In functional representation the multiplication of operators
is just their composition(.) .

In the previous section, (2.2) we have shown how to construct
co-vectors out of vectors, by the duality operations. It is obvious
then that having operators acting on co-vectors, e.g. on axes, we
can reconstruct operators acting on kets. If we forget for a moment
the fact that in fact we are defining the adjoints, the recipe is again
trivial (universal). From anaop defined on axes, we construct an
operator acting on kets by our old acquaintanceboost .
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How to represent the operator of energy (quantum level)N̂ of
an oscillator in theN basis, or the annihilator operatorâ which
decrements the excitation level, and defined by their action on a
one-component ket in this basis:

N̂ |n〉 = n|n〉 , (3)

â|n〉 =
√
n|n− 1〉 (for n ≥ 0) , (4)

for arbitraryn? Their decomposition gives infinite sums

N̂ =

∞∑
n=0

n|n〉〈n| , (5)

â =

∞∑
n=0

√
n|n− 1〉〈n| . (6)

We would have to operate with infinite matrices. Once again, the
functional, parametric representation of states and operators takes
into account the fact that effectively generated entities within the
program have always a finite number of components, and the pro-
cedure becomes effective. But, attention, in a lazy language we can
easily generate “infinite” objects, possessing an unlimited numer
of components. The expressioneffectively generatedmeans that
only a finite part of such entities is instatiated. The user in princi-
ple can define such vectors as the coherent states for the oscillator,

|z〉 =
∑∞

n=0

(
zn/

√
n!
)
|n〉:

coherent z = coh 0 1
where

coh n coeff = coeff *> ket (N n)
<+> coh (n+1) (z*coeff/isqrt(n+1))

(whereisqrt = sqrt . fromInteger ), but the result is
unusable. Handling of infinite series in a lazy language requires
some conscious methods, see e.g. [17]. We shall use them later.

Here is the coding of thêN operator. We begin with an aux-
iliary function opn which is linear, acts on axes, and has the se-
mantics:opn (axis (N k)) givesk *> axis (N k) . Its
definition is

opn ax a@(N k) = fromInteger k * ax a

Finally, the lifting of theN̂ (level ) operator to kets is given sim-
ply by level = boost opn .

Following the same reasoning we may define the annihilation
operator, and its adjoint (or its hermitian conjugate), the creation
operatorâ+|k〉 =

√
k + 1|k + 1〉. But beware, don’t forget the

contravariance of the lifting functors; we had no problems withN̂ ,
since this is a self-adjoint operator. If we define

oa ax (N k) = isqrt k * ax (N (k-1))
oc ax (N k) = isqrt(k+1) * ax (N (k+1))

then theapparently loweringoperatoroa acts on axes as a creator,
it transformsaxis (N k) into a vector proportional toaxis
(N (k+1)) . The same paradoxal property is obeyed byoc , it
is an annihilator in the axes’ domain. But — as the tradition in
quantum mechanics demands — we want operators acting on kets,
and here the duality restores the order. In the section (2.4) we shall
see more of that. Here we have

ann = boost oa
cre = boost oc

and this is all. All physics students in the world know thatN̂ =
â+â. Proving thatcre . ann yields an operator equivalent to
level (and also that the commutatorann . cre <-> cre
. ann is the identity) is more cumbersome, but it may follow
the same formal, on-paper reasoning as the traditional one, found
in quantum theory textbooks. We have the quantum oscillator in
the computer in the form as abstract as possible, and we can solve
several classical exercises from a quantum mechanics textbook by
programming. We will not get any symbolic answers, though, un-
less we pass from the numeric domain of scalars and integers to
some formal, symbolic algebra, which is beyond the aim of our
current work.

Lifting of these operators to general bras is equally easy, we
must boost them once more, but we obtain in such a way the ad-
joint of the operator. The presented construction does not permit to
derivethe adjoint which would act on vector of the same species, by
the standard relation:〈α|T+|β〉 = (〈β|T |α〉)∗. This is quite ob-
vious, the construction of an adjoint is a non-universal procedure,
no categorical reasoning may help us here. Only in aconcrete, dis-
crete basis it reduces to simple operations, such as transposing and
complex conjugation, otherwise some otherconcreteproperties of
the operator must be known, e.g., the fact that

(
d

dx

)+
= − d

dx
on

the domain of functions which behave sufficiently decently at the
boundaries of the region which determines their scalar product.

2.4 Some qubit operators

Material point dynamics, differentiation operators, infinite matrices
corresponding to the annihilation operator, etc. are entities vital for
physicists, but not so importanttodayfor computer scientists. We
shall return to physics in the section (2.5), but the latter will demand
the construction of models dealing with bits and their sequences.

Already at the one-qubit level, the transformation of state vec-
tors is not entirely trivial, since the freedom of choice is limited.
The corresponding operators, which transform kets:|ψ〉 → |ψ〉′ =

Â|ψ〉 must be linear and unitary (preserving the norm). In the clas-

sical concrete representation, where the state is a vector

(
α
β

)
, an

operator is a2×2 matrix. We shall use mainly projectors, and later
we will see that in our functional style we define composition of
operators backwards, using their adjoints, which is relatively easy
to understand, but needs an additional explanation.

The unary “not” (Boolean negation) operator lifted to the do-
main of vectors (kets) should satisfy:not|0〉 = |1〉; not|1〉 =
|0〉. Its matrix representation is thus the Pauliσx matrix: not =(

0 1
1 0

)
. This is a self-adjoint operator, and moreover it isinvo-

lution (it is its own inverse). In the domain of co-vectors (bras or
axes)

Its more abstract representation is the “switching” operator
|0〉〈1|+ |1〉〈0|, and this is our implementation, which is a slightly
modified set of functionals already presented in the section (2.3),
but restricted to represent dyadic products of kets, elementary or
not. Thus for any kets|p〉 and|q〉 we define|p〉〈q|:
dyade p q = \ax -> p ax *> dual q

and for elementary |α〉, where α is a state label, we
have warp alpha beta = dyade (ket alpha) (ket
beta) , which can be optimized into

warp alpha beta =
\ax -> ax alpha *> axis beta

The projector|α〉〈α| is just warp alpha alpha . The dyade
|α〉〈β| with α 6= β is calledwarp since it “bends” one direction in
the Hilbert space into another. The quantum negation is
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qnot = warp B0 B1 <+> warp B1 B0

Theπ-phase shifterσz (another Pauli operator) represented by the

matrix

(
1 0
0 −1

)
takes the form

sigz = proj B0 <-> proj B1

and the sum

had = sqrt 0.5 *>(qnot <+> sigz)

produces the matrixH = 1√
2

(
1 1
1 −1

)
, the well known

Hadamard operator, which performs the transformations|0〉 →
(|0〉 + |1〉)/

√
2, and|1〉 → (|0〉 − |1〉)/

√
2, used further to build

entangled pairs, to construct the quantum Fourier transform, etc.

An arbitrary (real) rotation which transforms, say,

(
1
0

)
into(

cos(θ)
sin(θ)

)
:

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
has of course the representa-

tion

rot theta = cos theta *> id <+>
sin theta *> (warp B1 B0 <-> warp B0 B1)

where the second term is proportional to the third Pauli matrix,

σy =

(
0 −i
i 0

)
.

Note the — already noted — contravariance of the operator
construction, in view of the fact that operators are functions which
do something to their arguments. Suppose that we shall sequen-
tially act on a ket|ψ〉 with two operators, say, first withA (opa ),
and then withB (opb ). The computation:|χ〉 = B A|ψ〉, which
can be graphically depicted as shown on Fig. 2, is implemented as
follows. First we define the operators acting on co-vectors (axes),
and at the end weboost them:

opa = boost opax
opb = boost opbx

This “quirk” will be very important for the construction on opera-
tors acting on tensor products, which are multi-linear. So, we have

|ψ〉AB

Figure 2: Chain of operators

chi = boost opbx (boost opax psi) =
psi . opax . opbx =
boost (opax . opbx) psi

That’s why on the Fig. 2 the operators acting on kets are applied as
drawn — from right to left, which is the opposite convention to one
found in most papers on quantum gates, etc. Butthis convention
corresponds better to the standard (Dirac) notation, and we shall
keep it.

2.5 Physical example

We shall solve now a conceptually simple, but non-trivial textbook
problem: the perturbational corrections to the lowest energy state
|0〉 of the anharmonic oscillator, with Hamiltonian:̂H = N̂+λĤ ′

with Ĥ ′ = λx̂4, whereλ is a small coupling constant, and̂x is the
position operator. (We will adopt the unit values for the elasticity,
mass, and the Planck constant; the energy has been shifted so that
E0 = 0, but we shall keep it for some time in order to have a
general development algorithm.) For people interested in quantum
computing this is a digression, but its aim is not the development
of physics, but the demonstration of the power of lazy evaluation!

Perhaps it is worthwhile to say a few words about thenon-
perturbed system. The Hamiltonian of a classic oscillator is:H0 =
1
2

(
p2 + x2

)
which, according to standard rules of quantization be-

comes the equivalent operator̂H0 =
(
p̂2 + x̂2

)
/2. Introducing

â = (x̂ + ˆp)/
√

2 it is easy to show that̂H0 = â+â + 1/2,
and the energy levels areE(n)

0 = 〈n|Ĥ|n〉 = n + 1/2, where
n = 0, 1, 2, . . .. The spatial wave functions〈x|n〉 which corre-
spond to those energy levels are easy to compute on paper, and
they can be computed almost directly by our package as well. We
show, just for instruction, how to compute them numerically us-
ing the algorithm, which according to the current teaching stan-
dards ispar excellencesymbolic, and designed to be solved on
paper. Wemustinvest the knowledge about the standard represen-
tation of the momentum operator in the positional representation:
p̂ = 1

i
d

dx
. From: â|0〉 = 0, we deduce thatψ0(x) = 〈x|0〉 obeys:

d
dx
ψ0(x) = −xψ0(x), soψ0(x) = exp (−x2/2). But from the

identity 〈x|a+|n〉 = 〈x| (x̂− ip̂) /
√

2|n〉 =
√
n+ 1〈x|n + 1〉,

we see that

ψn+1(x) =
1√

2(n+ 1)

(
xψn(x)− d

dx
ψn(x)

)
. (7)

This is a differential, recurrent formula, which needs the derivative
of ψn in order to computeψn+1.

Of course we don’t want to use any numerical approximations,
nor involve any other tool other than our small Haskell library. We
have included thus into it, our lazy automatic differentiation pack-
age [18], which permits to “lift” the normal numerical expressions
within a program to a domain which structurally is an infinite se-
quence: the value of the expression together with itsall derivatives,
and which mathematically belongs to a simple, but non-trivial dif-
ferential algebra. All typical arithmetic operations and elementary
functions are overloaded for this domain. For all the necessary de-
tails see the appendix C. The procedure which constructs numeri-
cally the full set of Hermite functionsHn(x) is literally the formula
(7).

herm 0 x = exp(-x*x/2)
herm n x = (x*hh - df hh)/sqrt(2*dConst n)

where hh = herm (n-1) x

It suffices to launchmap (dVal . herm 30 . dVar) ,
wheredVar constructs a generator (a “differential variable”) of
our differential algebra from a given numeric value, anddVal gets
the “main value” of the resulting tower of derivatives, over a list of
x values in order to generate the plot on Fig. 3. One of standard
exercises in quantum mechanics is the comparison of the plot of
|Hn(x)|2 with the classical distributions in order to see what is the
sense of the quasi-classical limit of quantum mechanics, so such ex-
ercises are methodologically useful, although rarely anybody needs
the concrete numerical values ofH30(x).

In finding the corrections we will not need the positional represen-
tation, only the|n〉 basis. It is utterly trivial to show that the first
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Figure 3: Hermite functionH30

correction to the unperturbed solution is equal to〈0|Ĥ ′|0〉, and the
textbookssometimesshow a compact formula for the second term;
usually this is left for the students, and it may occupy them for
awhile. . . Computing the third-order correction is near the limit of
the nervous resistance of a typical physicist; the problem is that for
many interesting cases in technical applications of quantum physics
such as molecular spectra, those, and much higher correctionsmust
be computed.

The consequence of this is obviously a very intense exploitation
of Computer Algebra packages, and the production of horrendous,
multi-page formulae, unreadable (see e.g., [19]), and often badly
optimized, just to convert them into Fortran programs, and com-
pute numerically a few numbers. We have chosen the oscillator,
and not, say, the Hydrogen atom, because of the simplicity, but the
approach generalizes in a fairly transparent way (although the con-
crete formulae might become much more tedious. . . ).

We show thus a complete solution of the stated above problem
which gives the numeric solution directly. This will be probably the
shortest program to do that which the reader could find anywhere,
and it uses the series expansion described in [17], and presented in
a few lines in the Appendix (B).

The Schrödinger equation which gives the energyE of a system

in a state|Ψ〉 is:
(
Ĥ − E

)
|Ψ〉 = 0. We do not knowE nor |Ψ〉.

We may suppose, though, that ifλ is small, the series expansion of
E = E0+λE1+λ2E2+· · ·, and|Ψ〉 = |Ψ0〉+λ|Ψ1〉+· · ·makes
some sense, even if the series is only asymptotic (divergent; this is
the case here). Here|Ψ0〉 = |0〉, and we know that the unperturbed

equation
(
N̂ − E0

)
|0〉 is fulfilled. We reformulate the expansions

above as folows:

|Ψ〉 = |0〉+ λ|ψ〉 , (8)

E = E0 + λE′ , (9)

where both|ψ〉 andE′ are series inλ. The Schrödinger equation
becomes

E′|0〉 −
(
N̂ − E0 − λE′

)
|ψ〉 = Ĥ ′|0〉+ λĤ ′|ψ〉 . (10)

We are allowed to choose the normalization:〈0|Ψ〉 = 1, which
implies the orthogonality〈0|ψ〉 = 0. This, after having written the
scalar product of (10) with〈0|, and〈k| for k 6= 0, gives us:

E′ = 〈0|Ĥ ′|0〉+ λ〈0|Ĥ ′|ψ〉 , (11)

〈k|ψ〉 =
1

−(k − E0) + λE′

(
〈k|Ĥ ′|0〉+ λ〈k|Ĥ ′|ψ〉

)
.(12)

The only final result needed isE′. The equations above are al-
ready effective algorithms able to compute two involved quanti-
ties, E′ and 〈k|ψ〉, but a third one:〈k|Ĥ ′|ψ〉 should better be
eliminated. We achieve that through the substitution〈k|Ĥ ′|ψ〉 =∑

m H ′
km〈m|ψ〉, whereH ′

km = 〈k|Ĥ ′|m〉, which transforms the
equations above into

E′ = H ′
00 + λ

∑
m

H ′
0m〈m|ψ〉 , (13)

〈k|ψ〉 =
1

E0 − k + λE′

(
H ′

k0 + λ
∑
m

H ′
km〈m|ψ〉

)
.(14)

It may seem rather useless to repeat here this classic derivation,
but in no existing popular textbooks the reader will find suchal-
gorithm, since the laziness is here the crucial ingredient, and spe-
cialists in quanta rarely use functional languages. The rest is the
coding, where we have simplified slightly the formulae, omitting
the checks fork etc. negative; the matrix elements and the function
psi vanish then.

As we have already mentioned, our code is more generic
than presented above, the states etc. are parameterized by arbi-
trary scalars, which are equipped by a sufficiently rich arithmetic.
Here the field of scalars is composed of expressions of the form
e0 :> e1 :> e2 :> ... which represent the power series
e0 + λe1 + e2λ

2 + · · ·. Such series are constructed lazily, and
don’t need any truncations. Here is the construction:

hp = x.x.x.x where
x = (1/isqrt 2)*>(ann <+> cre)

elmat k m = hp (ket (N m)) (axis (N k))

ep = e0 :>
sum [elmat 0 m * psi m | m<-[0,2,4]]

psi k = (elmat k 0 :>
sum [elmat k m * psi m |

m<-[k-4,k-2 .. k+4]])/
(negate(fromInteger k):>ep)

The result is the series {0.75, -2.625, 20.8125, -241.2891,
3580.98047, -63982.8134766, . . . }. As seen, this time we used ef-
fectively the expansion of the quantum state in a known basis, but
we knewfrom the structure of̂x that the number of non-vanishing
matrix elements within the infinite sum is small.

Launching the program above results in a very bad, and very
inspiring surprise. One gets 8, perhaps 9 terms, and the memory
problems begin. . . The consumption of the memory ressources is
exponential, because the lazily evaluatedpsi k is recursive, and
each recursive call generates new instances of thepsi thunk on the
heap, thunks which become larger, and larger. . . One of the reasons
why in scientific computations the lazy coding is rather unpopular,
is that writing such codes needs a decent knowledge of specific
optimization techniques; here: the memoization of lazy recursive
calls.

The program below generates reasonably fast5 hundreds of
terms, and finally breaks because of overflows, since the series are
divergent (30 terms yield numbers of the order of1045. We can
rescalêx, but no factor constn can prevent the explosion. We could
use Euler or other resumming techniques, whose lazy implementa-
tion can be found in [20], but we shall not do this here).

psi k | k>=0 = lpsi!!(fromInteger k)

5some seconds; after 100 terms on a popular platform (a PC) the delays become
visible. . .
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| otherwise = 0
lpsi = 0 : ps 1 where

ps k = ((elmat k 0 :>
sum[elmat k m * psi m |

m<-[k-4,k-2 .. k+4]])/
(negate(fromInteger k):>ep)):ps(k+1)

We have in a most straightforward way defined the infinite list
lpsi = [psi 0, psi 1, psi 2, ...] where eachpsi
mrecurs indirectly, passing through the elements stored inlpsi .
Note that the program remains co-recursive without any special
cosmetics,psi does not verifywhether the needed element has
been already calculated, in order to retrieve its value!

Many othersimple and goodoptimizations are possible. We
could have tabularized the〈k|Ĥ ′|m〉 matrix elements; we don’t
really needket s, everything could be computed directly with(N
k) and axes; the structure of̂x4 could have been simplified, we
never need complex numbers, etc. But our point was that even
without those conscious technical improvements, the formalism is
perfectly usable on a very small computer.

3 Measuring

Typical theorists in computer science who “dare” to touch quan-
tum problems, usually have no particular problems with the under-
lying algebra. There is, however, in our opinion, one weak point in
several popular presentations and simulations (e.g., [21]) of quan-
tum circuits and other aspects of quantum computing: the notion
of measurementis often treated in a littlecavalier way, usually
sufficient for computing, and for the complexity analysis, but not
always very good for the comprehension. In classical theories the
measurement is an issue belonging to the domain of experiment,
and to epistemology; a theorist may joyfully analyze the Turing or
RAM machines, and re-use at will all the information specified by
a given configuration (the state) of the machine.

In a quantum system any attempt to find out the information
hidden in an unknown state will destroy it. Thus, this measur-
ing processmust be includedin the theoretical model of a quan-
tum system and of the information flow therein, if it is to be com-
plete enough so as to deserve the name of ‘simulation’. If one be-
gins with concrete bit matrices which may be regarded, copied and
transformed at will, the model is already “too classical”. . .

As we know, an unknown quantum state cannot be copied
(“cloned”) [22], so it is not possible to get around the difficulty
imposed by the active role of measurement by producing the sys-
tem duplicate, destroy it by the observation, and then do something
more clever with the original.

The presented functional formalism attempts to comply with
this restrictions, in the sense that we do not try to “cheat”, to ex-
ploit any information to which we have no “legal” access, although
classical computer programs have no intrinsic morality.

3.1 Final computed results

As long as we stay within the quantum framework,all measure-
ments (generation of numerical results) reduce themselves to com-
puting of the mean values of some self-adjoint operatorÂ in a state
|ψ〉, which is denoted by〈ψ|Â|ψ〉. In the example in the former
section, (2.5), we computed the energy,〈n|N̂ |n〉. One reads of-
ten that the quantum measurements give us the probabilities of the
components|α〉 found in a given state, but this — according to (2)
— is also an average of a self-adjoint operator, of a projector:

|〈α|ψ〉|2 = 〈ψ|
(
|α〉〈α|

)
|ψ〉 . (15)

In several papers devoted to the quantum computing this is the end
of the story; the model gives us the probabilities, they are numbers,
and we may stop here. If we decide to go further, the remaining
part of the story is a “normal”, classical (albeit non-deterministic)
computation: we use some random number generator in order to
generate the instances of the concrete classical configurations, ac-
cording to the prescribed probabilities.

No model can do more than that. This means that in order to
get some results methodologically meaningful, we must repeat the
simulated experience many times. Unless we are absolutely sure
that the result of a quantum process is either a value “↑” or “ ↓”,
and not an arbitrary superposition thereof,one, individual expe-
rience conveys almost no information. This means that we must
operate from the beginning on ensembles of many identically pre-
pared quantum systems, and to use a random numer generator many
times, in order to gather a meaningful statistics. On the other hand,
all serious algorithms in quantum computing are designed to gen-
erate a “settled”, or “committed” states corresponding to classical
configurations, and not to arbitrary superpositions thereof. In such
a wayonemeasurement should provide a definite (and definitive)
answer.

Our package uses random number generators to producear-
bitrary discrete distributions, and it works even in the case of in-
finitely dimensional bases, provided that the probability amplitudes
vanish sufficiently fast. We know e.g., that the coherent state of an
oscillator|z〉, wherez is a complex number, which can be used to
model a laser, gives the Poisson distribution for the excitation lev-
els (or the number of quanta):pn = |〈n|z〉|2 = µn/n! exp(−µ),
whereµ = |z|2, andn can be arbitrarily large. Yet, if the total
energy of the system is limited, the average excitation levelµ is not
so big either, and standard techniques of generating Poisson distri-
butions, e.g., [24] tell us how to measure our system.

3.2 Mixed states and density matrices

To be completed

4 Construction of Composite Systems

4.1 From Cartesian to tensor products

The construction of a classical system with many degrees of free-
dom, such as two rotators, or an oscillating particle with spin, is
based on the simple set product: the system state is described, say,
by a two-valued variableand with its excitation level. In general,
we can — in principle — build a compoundHbase using the carte-
sian product constructor:

data Qbase = Q Qubit | O Oscil | ...
| CP Qbase Qbase

instance Num s => Hbase Qbase s where
bracket (Q x) (Q y) = bracket x y
bracket (O x) (O y) = bracket x y
-- ...
bracket (CP x a) (CP y b) =

bracket x y * bracket a b
bracket _ _ = 0 -- Incompatible

In this caseaxis remains a linear operator, and it is possible to
define the lineartensor product( ><) of two axes by

infixl 7 <*>
(ax1 <*> ax2) (CP a b)

= ax1 a * ax2 b -- Forget it!
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Of course, this requires thatax1 and ax2 are functions over
Qbase, and not on individual bases for the qubit, the rotator, etc.
This cascading tags may be a little clumsy, but this is not the worst
problem: in fact, amalgamating the attributes of the subsystems
within a composite data structureCP ... from the quantum point
of view is a construction of the direct sum of the component Hilbert
spaces, and hasno physical meaning. It is a purely formal, artifi-
cial construct, without anya priori mathematical properties, but
with too strongstructural properties: in principle it is possible to
disentangle a part of such a structure (one subystem) by an appro-
priate partial selector. In a quantum world this is impossible; this is
the very essence of the Einstein-Rosen-Podolski paradox.

The main proposition in this section, considered a common
truth in quantum physics is: the joint quantum state of two inde-
pendent systems is their tensor product. For a modern discussion
of this issue see [23], but the book [15] (and many, many others)
provides a complete discussion of the related mathematics. The
formulae above, definingQbase and the product of axeswill not
be used at all!, and we start from the beginning. We leave the axes
as they have been defined in the section (2.1).

If a ket is a linear function defined on axes, a tensor prod-
uct of two (or more) kets is a bi-linear (multi-linear) functions
of two or more axes: ifkt1 = \ax -> ktf1; kt2 = \ax
-> ktf2 , thenkt1<*>kt2 = \ax1 ax2 -> ktf1*ktf2 ,
and this should be appropriately generalized to multi-linear forms.

In general, knowing that our functions will need many argu-
ments, it is good to define more general Vector Space instances,
e.g.:

instance (Vspace b) => Vspace (a->b)
where

vZero v = vZero
f <+> g = \x -> f x <+> g x
f <-> g = \x -> f x <-> g x
(a *> f) x = a *> (f x)

where the lifted arithmetic operations are defined recursively. The
tensors are defined with the aid of the outer multiplication oper-
ator (<*>) , and they need seriously the multi-parametric classes
with functional dependencies in order to be suficiently universal,
but concrete enough so that the user doesn’t need to put concrete
type signatures everywhere. We define

class Tensor v1 v2 v3 | v1 v2 -> v3
where

(<*>) :: v1 -> v2 -> v3

where the functional dependency means the obvious, that the type
of (p+q)-linear tensors can be deduced from thep- andq-linearity
of the factors. Scalars are natural tensors:

instance Tensor Scalar v v
where

s <*> v = s *> v

and the most important recursive type constraint is

instance (Tensor v1 v2 v3)
=> Tensor (a->v1) v2 (a->v3)

where
u <*> v = \x -> u x <*> v

so, now we can constructaket = ket B0 <*> ket B1 , and
use it in our calculations. It is possible to prove that the tensor prod-
uct is associative, although obviously non-commutative. In mathe-
matical notation instead of|ψ〉 ⊗ |φ〉 we will write simply |ψ〉|φ〉,
or |ψ;φ〉.

The tensor product of states is an “irreversible operation” in the
sense that in general it is not possible to extract trivially one sub-
system, although by performing a partial measurement (applying
the vector to an incomplete set of Hbase arguments), the arity of
the state is reduced. But the result is (usually) not normalized, and
needs thus some re-interpretation. If a given bi- or multi-system
state is not a single tensor product but a sum thereof, for example
if |ψ〉 = 1√

2
(|0〉|0〉 − |1〉|1〉), then this extraction of a single sub-

systemis not possible at allwithout destroying the quantum struc-
ture of the state. We say that the two subsystems areentangled.
They constitute a whole, even if the two subsystems are separated
in space by a large distance. This is a conceptual problem which
has been discussed thousands times, we shall not pursue this topic,
we want only to signal that a simulator of a quantum system cannot
be modularized into small, local units, each dealing with a small
local sector of the global state.

This is true foranycomputer model of a quantum system. Does
the functional programming have any advantages wrt. modelling
approaches which use bit strings and complex arrays? Our answer
is: yes. The laziness permits to keep relatively large tensor prod-
ucts in a semi-developed form, and facilitates the implementation
of Bennet tricks [25] which reverse the computation flow in order
to get rid of the auxiliary garbage. These investigations will be
presented in a forthcoming work.

4.2 Dual tensors

This section is very short. First, if we want to constructelementary
two- (or more, but practically restricted to few) sub-systems, say,
|0〉|1〉, we don’t need to apply explicitly the tensor product of single
kets, we may start with multilinear primitives, e.g.,

ket_p alpha beta = \ax1 ax2 ->
(conj ax1 alpha)*(conj ax2 beta)

Passing from such kets, or from any combinations thereof to axes
is trivial, the answer is

(dual_p ktp) alpha beta =
ktp (axis alpha) (axis beta)

and we see that a compound axis is also a bilinear function, and
doesn’t involve any “classical” Cartesian product of the associated
Hbase labels. The norm of such a (ket) vector for theQubit sys-
tem is given thus by

norm2_p ktp = axnorm2_p (dual_p kt2)
where

axnorm2_p ax2
= abs2(ax2 B0 B0) + abs2(ax2 B0 B1)
+ abs2(ax2 B1 B0) + abs2(ax2 B1 B1)

4.3 Operators on tensor product states

We shall define now the tensor product of operators. Mathemat-
ically the tensor product of̂A1 which acts on|ψ1〉, andÂ2 con-
cerned with the second subsystem, is the operatorÂ1 ⊗ Â2 whose
semantics is the following:

Â1 ⊗ Â2

(
|ψ1〉 ⊗ |ψ2〉

)
= (Â1|ψ1〉)⊗ (Â2|ψ2〉) (16)

The implementation seems quite complicated, especially if we
think already that the vectors which will be processed directly by
the functionals defined in the program are in fact co-vectors (axes);
we will have to boost multi-linear functions.

10



??

Figure 4: Operator on a composite state

In different words: we have a set of “input”, and a set of “out-
put lines”, like on Fig. 4, and we have to constructone object
which performs this transformation. It is interesting to observe that
when we define such transformation acting on kets, (single kets
which are tensorial, i.e., multilinear), the argument of the operator
provides structurally a “continuation”, and the composition of such
operators is stylistically similar to the CPS programming, which —
as we know — is able to deal with multiple arguments-to-multiple
results functions.

Constructing the product of two operators is straightforward:

boost2 ap1 ap2 ktp =
\ax1 ax2 -> ktp (ap1 ax1) (ap2 ax2)

whereap1 andap2 are operators acting on single axes, andktp
is a 2-ket. Such factorized object can be depicted as on Fig. 5.

A1

A2

Figure 5: Tensor product of operators

The recursive construction of N-argument operators may follow the
recipe similar to this used already for kets, but now we are in a
different situation: the arguments of our operators are linear func-
tionals themselves. The construction of the tensor product (acting
on kets) of two linear (one-argument) operators (acting on axes) is
easy, and shown above. Suppose now that we have two operators
acting on kets, one of them is elementary, and the other — multi-
linear:

op kt = \x -> kt (ap x)

opm ktm = \y1 y2 ... ym ->
ktm (bp1 y) (bp2 y) ... (bpm y)

(where lack of indices ony in (bpk y) suggests that the corre-
sponding operator may depend effectively on many arguments; it is
not necessarily a tensor product).

The productopp = op <*> opm will have as its specifica-
tion the following pattern:

opp ktp = \x y1 ... ym ->
ktp (ap x) (bp1 y) ... (bpm y)

This can be reduced to:

opp ktp = \x -> opm (ktp (ap x))
= op (opm . ktp)

or, simply: opp = (op .) (opm .) . Unfortunately, when
the left argument of the tensor product is multilinear itself, the

formula gets more complicated:op2 <*> opm = (op2 .)
((opm .) .) , op3 <*> opm = (op3 .) (((opm
.) .) .) , etc. We have to construct a recursive generator for
such types in a general case.

To be completed. Stuck. . .

5 Quantum Circuits

5.1 Some elementary gates

We have seen already some “gates” (operators) on single qubits,
such as the negation. From the Pauli matrices we can construct
the rotations, phase shifts, etc., but in order to be able tocompute,
it is necessary to have some multi-bit, or rather multi-qubit oper-
ators, and some generic mechanisms to compose them. Good, we
know already how to make tensor products, and we know that the
operators form a vector space, so we can combine them linearly.

The basic, andverystrong requirement imposed on those gates
is their unitarity: A+ = A−1, which implies reversibility. This
means that a classical gate, say NAND which combines two bits-
arguments in one-bit result is an illegal operator, it does not corre-
spond to a physical evolution of a quantum system.

Thus, one can read sometimes that a legal operator must have
the same number of input and output lines. This is a trivialization
of the problem, of course there are legal quantum processes which
create or annihilate particles, everything depends on the internal
structure of these “lines”. For very simple systems, such as qubits
realized as flipping spins1/2, the statement is true because of the
conservation laws.

But for computing purposes even a 1-to-1 process, a 1-bit func-
tion f(x) may be illegal if it is not reversible. It has been shown
(see e.g., [4]) that by adding extra “ballast” lines with the extra data
frozen, all functions may be converted to bijections. For example,
in order to construct an equivalent of a XOR gate, we add one out-
put line, which copies one input. The result, whose standard graph-
ical form is depicted on Fig. (6) is called the “controlled-NOT”
gate, corresponds to the transition:|x〉|y〉 → |x〉|x ⊕ y〉, and has

|x〉

|y〉

Figure 6: Controlled-not gate

the following definition:

cnot kt x y = p B0 + p B1 where
p b = kt (qproj x b) (xor (axis b) y)
xor r = r B0 *> id <+> r B1 *> qnot
qproj x b = x b *> axis b

Notice that the gate performs a measurement (filtering), since it
splits the state explicitly into two projections. It is not possible to
avoid this. In the next section, (5.2) we add some comment to it.

5.2 Example: Deutsch problem

One of the simplest algorithms specific to quantum processing is
the solution of a toy problem proposed by Deutsch. Given an un-
known one-bit functionf(x) find as fast as possible whether the
function is constant,f(0) = f(1), or not. Classically it requires
two measurements. But if we manage to convert this function into a
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quantum operator, it may be applied to aparticular superposition of
states|0〉 and|1〉, and return some answer in one step. (Of course,
this will need some filtering, but we have already accepted the fact
that on genuine quantum systems it takes no time; the “two elemen-
tary applications” are executed in parallel. In our simulated model
obviously we won’t obtain anything miraculous.

First, we will generalize the controlled-NOT gate to the opera-
tor

|x〉|y〉 → |x〉|f(x)⊕ y〉 (17)

fcnot f k x y = p B0 + p B1 where
p b = k (qproj x b) (xor (axis (f b)) y)

This is the central processing module within the circuit which
solves the entire problem, and which is shown on Fig. (7). Two

|0〉

|1〉

H

H

fHmeas.

scratch

Figure 7: Deutsch problem

assigned input lines:|0〉 and |1〉 are processed first by Hadamard
transforms (the tensor products thereof, of course, as shown).

This part of the circuit takes the input into the combination

|0〉|1〉 → 1

2
(|0〉+ |1〉) (|0〉 − |1〉) (18)

=
1

2
(|0; 0〉 − |0; 1〉+ |1; 0〉 − |1; 1〉) . (19)

The central module applies the functionf . If it is constant, say
f(x) = 0 for all x, the state changes into

→ 1

2
(|0; 0〉 − |0; 1〉+ |1; 0〉 − |1; 1〉)

=
1

2
(|0〉+ |1〉) (|0〉 − |1〉) , (20)

and iff is, say the identity, then we will obtain

→ 1

2
(|0; 0〉 − |0; 1〉+ |1; 1〉 − |1; 0〉)

=
1

2
(|0〉 − |1〉) (|0〉 − |1〉) . (21)

In both cases thelower line remains the same, but the upper,x line
changes in a particular way. If we applyto it (the lower line is
scratched) the Hadamard transform again, forf const the outcome
is proportional to|0〉, and for the other case —|0〉.

We can show the coding, but first a few words about the non-
chalance of this derivation. What kind of mathematical object rep-
resentsf(x) in (17)? Is it a state description, suggested by its pres-
ence in a ket? Or a number 0 or 1, used numerically? Remarkably,
in several introductory articles this problem is never explicited, the
authors put or extract numbers into, or out of kets without any com-
ments. It is possible, because they didn’t try to implement states in
anabstractway, as we did. Actually the functionf cannotbe an
operator on general quantum states, it can do something only to a
classical configuration, not to a superposition.

In our framework the situation is absolutely clean,f ::
Qubit -> Qubit . We define two such objects:

fmut = id
fcst = const B0

and the circuit is represented by the following construction:

in1 = (had <*> had) (ket B0 <*> ket B1)

had_a = had <*> id
xout = had_a (fcnot fmut in1)
yout = had_a (fcnot fcst in1)

It suffices to measure those last states in order to find that if we
freeze arbitrarily the second qubit (or if we average over it, which
does not change anything), then the reduced state is proportional
either to|0〉 or to |1〉.

In this introductory paper we cannot show more elaborate ex-
amples, nor show how the laziness helps to deal with long qubit
sequences, but we believe that the overall flavour of the proposed
framework is already sufficiently visible.

6 Conlusions

. . . in a nutshell: It is difficult to say when (if at all) we will have
working quantum computers. We are nevertheless convinced that
the paradigms of functional programming constitute a sound basis
for their modelling, understanding, and also, in some possible fu-
ture — their programming. The main purpose of this paper is to
convince also the reader, by showing some simple, but not entirely
trivial examples.

In this, preliminary work, we propose an abstract geometric
framework permitting to define standard quantum entities such
as states and observables, as functional objects, programmed in
Haskell. The level of abstraction is so high that we can offer a
common style for the simulation of very different quantum sys-
tems, and yet propose a set of effective algorithm implementations,
permitting to obtain some non-trivial numerical results. Moreover,
this genericity makes it more difficult to introduce errors in the pro-
gram.

The mathematics used in standard quantum calculus is rather
different from what one finds in a typical text on the theory of pro-
gramming, so we have been annoyingly explicit in defining our vec-
tor bases, tensor products, etc. We believe, and we wanted to show
that a modern, strongly typed and polymorphic functional language
is actually the best tool for the implementation of those objects, al-
though the Haskell type system is still not perfect for our purposes.
This work will continue.
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A Multi-parametric classes

A ‘class of types’ in Haskell is a constraint, a relation fulfilled by
the types which will be declared as its instances; the class says
that its types-instances have some properties ensured by the exis-
tence of some polymorphic functions (class members). There is
no conceptual obstacle that a class bind two or more types. Such
multi-parametric classes are heavily used in our framework. First
of all, it would be extremely rigid basing all the vector spaces in-
volved, on the same type of scalars. Usually we use complexes, but
for testing we can often forget about phases and use reals. In our
semi-symbolic exercises we have used infinite power series, or infi-
nite sequences belonging to a differential algebra, which permitted
the implementation of the automatic differentiation algorithm.

So, we shall define more general vector spaces. Some elements
remain, for example

class Vspace v
where

(<+>) :: v -> v -> v
...

needs no modification since no scalars are visible here. We have
separated the multiplication by scalars to a different class

class Module v s
where

(*>) :: s -> v -> v

wherev is the type of vectors, ands denotes the type of the as-
sociated scalars. This class has instances in the scalar domains,
where(*>) reduces to(*) , and the recursive, already mentioned
in the text (2.3) clause permitting to lift the multiplication to the
functional domain is:

instance (Module b s) => Module (a->b) s
where

(a *> f) x = a *> (f x)

A.1 Functional dependencies

Such type framework is too ambiguous. The Haskell type system
forces us to declare practically everything, and often is not able to
deduce the instance of the Module class. We used thus the fact that
if the type which describes vectors is known, obviously its field
of scalars is known as well. The augmented type system, which
permits to the compiler the resolution of some ambiguities has been
described in [26], and has been implemented in Glasgow Haskell.

The trueModule definition is

class Module v s | v->s
...
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which means that the types is uniquely determined by the type
v . Our framework is much more polymorphic now. Unfortunately,
although in principle it doesn’t seem necessary, we were obliged to
define the instances for each scalar field separately:

instance Module Double Double
where

x *> y = x * y
instance Module Cmplx Cmplx

where
x *> y = x * y

etc., since the attempt to declare the constrained general numerical
instance

instance (Num s) => Module s s
where

x *> y = x * y

fails. For similar reasons which we cannot analyze, the tensor
generic instance for numerical scalars:

instance (Num s,Module v s) => Tensor s v v
where

s <*> v = s *> v

doesn’t work either. The concrete specifications:

instance (Module v Cmplx)=>Tensor Cmplx v v
where

s <*> v = s *> v

and for other scalars:Double , Series Cmplx etc., work rea-
sonably well. It seems thus that our attempt to use Haskell in an ab-
stract geometric context shows a usefulness of a possible strenght-
ening of its actual type system.

B Lazy Infinite Series

Here, and in the next section (C) we just show how these “semi-
numeric”, composite data structures are defined, and how to con-
struct the arithmetics over them. The details are in [17].

Suppose that a pairu = (u0 B u) denotes the infinite power
seriesu = u0 + u1x + u2x

2 + · · ·; obviouslyu is its tail u1 +
u2x+· · ·. The dummy (formal) variablex does not figure explicitly
anywhere, and the Haskell name forB is (:>) . Structurally such
a sequence is equivalent to a list[u0, u1, . . .]. Adding series is
performed termwise by a generalizedzipWith operation, which
needs no comments.

The multiplicationw = uv of u = (u0 B u) by v = (v0 B v)
is equal to:

w = (w0 B w), where w0 = u0v0; w = u0v+uv . (22)

The divisionw = u/v, whose algorithm which uses indexed vec-
tors, given e.g., in [24] is not so short, in a co-recursive formulation
becomes extremely compact. From the identityu = wv we see
immediately the validity of

w0 = u0/v0; w = (u− w0v) /v . (23)

Elementary functions, such as the exponential, pass through the
differential identities (withx being the differentiation variable) ful-
filled by such series. Fromw = exp(u) we deducew′ = wu′,
andw = w0 +

∫
wu′. But the differentiation of a series is just a

multiplication term-wise of its tail by the sequence{1, 2, 3, . . .}.
The integration divides the argument by this sequence, but puts in
front the new 0th term — the integration constant. This makes the
co-recursion possible, and this definition

serInteg c u = c :> snt 1 u where
snt n (u0:>uq) =

(u0/fromInteger n) :> snt (n+1) uq

exp u@(u0:>uq) = w where
w = serInteg (exp u0) (serDiff u*w)

becomes effective. Our package contains procedures for the series
composition, reversal, etc., but we will not need them here.

C Lazy Automatic Differentiation

This section contains a very small fragment of the paper [18]. We
shall describe the lifting of numerical expressions within a pro-
gram into a domain where a non-trivialderivation operationdf
is defined. All numerical expressions can be composed from el-
ementary arithmetic operations (and some built-in functions with
known properties). For simplicity we describe a 1-dimensional
case, where there is a sense in saying that we haveone“variable”:
it may be the argument of a function whose derivative we want to
compute; it is identifiable in the program, but it has no specific
name. Its main property is that its first derivative is equal to 1, and
all higher derivatives vanish.

The program contains also some number ofconstantswhose
derivatives vanish. All “standard” expressions, say,e, are lifted
to the domain of infinite sequencese = e0 I ẽ, wheree0 is the
“main value”, the value of the original expression, andẽ = e1 I
e2 I e3 I . . ., with right-associativeI, represents the tower of all
derivatives ofe. In Haskell we define the following structure:

class Diff a where
df :: a->a

instance Diff Double where
df _ = 0.0

-- ...

data Dif a = Cst a | Dif a (Dif a)
instance Num a=>Diff (Dif a) where

df (Cst _) = Cst 0
df (Dif _ p) = p

where the variantCst x is a natural optimization of — otherwise
unavoidable — infinite chainDif x (Dif 0 (Dif 0 (Dif
...))) . The expressionDif e0 de is the Haskell representa-
tion of e0 I ẽ.

If the user writes a numerical procedure in which all the op-
erations and functions are sufficiently polymorphic: not restricted
to Doubles etc., but overloadable to, say,Dif Double , then
it suffices to replace all implied constantsc by Cst c (all explicit
numeric constants are lifted automatically by specificfromInte-
ger etc; converters), and thevariablex by dVar x = Dif x
1. TheDif datatype is an instance of all needed numeric classes.

The lifted expressions are added or subtracted term by term, as
in the case of series. The Leibniz identity which must be satisfied
by a decent derivation operator results in the following recipe for
the multiplication ofe = e0 I ẽ by f = f0 I f̃ :

e@(e0 I ẽ) · f@(f0 I f̃) = e0f0 I ef̃ + ẽf (24)

The division, and some elementary functions given below, are
equally easy. (We omitted the trivial definitions involving theCst
sector.)

e@(e0 I ẽ)/f@(f0 I f̃) = e0/f0 I (ẽ/f−e·f̃/(f ·f)) , (25)
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and

exp(e@(e0 I ẽ)) = r where

r = exp(e0) I ẽ · r , (26)
√
e0 I ẽ = p where

p =
√
e0 I (0.5 · ẽ)/p , (27)

atan(e@(e0 I ẽ)) = atan(e0) I ẽ/(1 + e · e) , (28)

etc. All expressions belong thus to the lifted domain, and in order
to retrieve their main values, we apply the functiondVal (Dif
x _) = x . All derivatives are available “for free”. As we have
seen in the example in section (2.5), sometimes we don’t need the
values of the derivatives in the final output, but we use them during
the calculations, e.g., to solve differential recurrences. The compu-
tations in quantum mechanics use them very frequently.
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