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Abstract

We continue the discussion of a proposed formerly functional formalism for simulation of quantum dis-
crete systems. We underline the relevance of continuations, and in particular — of linear continuations
for the simulation of quantum evolutive systems, notably of the “quantum circuits” supposed to constitute
the building bricks of future quantum computers. Our simulation framework implements quantum states
and operators through functional objects, so the relation between the chain of transformations of states
and continuations is natural. The linearity is rather obvious as well: quantum states are never reused.

[This is a preliminary,draft version; a “stream of thought” rather than an article.
The problem is that I am not James Joyce. . . ]

1 Introduction

Computer scientists continue their interest in the domain ofquantum computingand its simulation — see
e.g., [1, 2, 3] and many others — for several reasons, despite a rather slow (although steady) recent progress.
Independently of the hope that the fabulous speed-up of some hard algorithms like those of Shor or Grover
[4, 5], and of the possibility that one day quantumprogrammable deviceswill help to simulate other quan-
tum systems [6, 7], etc., there are some other interesting points.

The epistemological status ofquantum informationand of the fact that obtaining this information de-
stroys the underlying structure, is still not entirely clear, and some implementable constructions, even if
they don’t “solve the quantum mystery”, at least help to shorten the gap between our formal understanding
of quantum entities, and the sense of their models. Besides, the theory of algorithms realizable on quantum
devices, and related matters areper seinteresting study topics.

In [8] we attempted to implement in a purely functional language Haskell an elementary formalism
permitting to “put into the computer” the typical quantum structures: states and operators, using functional
objects. Our approach tends to be as anti-speculative as possible, and relies on established universal proper-
ties of quantum theory, we simply “jumped into” the category of Hilbert spaces in order to implement some
standard quantum calculi, usually performed on paper. It turns out that within this framework, the chain
of transformations of quantum states bears a striking resemblance with the continuation-passing protocol.
While this is a preliminary work, and not everything is clear, this resemblance is obviously not accidental.

We will arrive at CPS in a natural, almost automatic way, using quite universal (and thus rather weak)
properties of functions representing quantum entities. The main motivation to present this work is that we
haven’t seen this analogy in easily accessible literature, and our ambitions are rather modest. We don’t plan
to add anything really new to the theory of programming with continuations, but on the contrary, we hope
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that this protocol turns out to be a promising approach in applications related to the modelling of quantum
circuits.

2 Quantization, the Functional Way

The configuration (state) of a classical system is a setα of parameters: the position~p of a particle, the
excitation leveln of an atom, the values↓ or ↑ of a dichotomic variableq which represents some realization
of a bit, etc. In the quantum world thestate is a normalized vectorin a metric (Hilbert) space, whose
basis is usually parameterized by some classical configurations, so that we can call the basis vectors the
“classically measurable quantum states”, say, a “ket”| ↑〉 in the Diracbra-ketnotation.

But a qubit or any other may find itself in a superposition state|ψ〉 = g| ↓〉 + h| ↑〉 or g|0〉 + h|1〉,
provided everybody knows what is the physical meaning of indices ‘0’ and ‘1’, which in principle should
not be confounded with any numerical values, but which are commonly used for obvious reasons. The
scalar product squared:|〈0|ψ〉|2 gives the probability that in this state the individual measurement yields
‘0’ (e.g. ↑). Thebra vector〈ψ| is the dual (co-vector) of|ψ〉.

A quantum system evolves1 by acting upon them with linear unitary operators:|ψ〉′ = U |ψ〉. The
“evolution stops” when the observer projects the final state on some physically justified basis, and gets
some answer. It may be an oracle-type answer (spin-up or down), or, after gathering some statistics by
repeating the process with identically prepared initial states, it may take the form of some probabilistic
measure.

Quantum states of independent (non-interacting) subsystems are tensor products of individual vectors:
|100〉 ≡ |1〉 ⊗ |0〉 ⊗ |0〉, and operators acting on them are also tensor products. For interacting systems
states are usually superpositions of such tensor states; their separation into additive components may not be
easy.

Computer (classical) realizations of quantum entities have many variants. In view of the simplicity of
the evolution process, particularly inspiring seem the functional approaches, see [9, 10, 11]. The data types
used to store quantum states may be algebraic compounds: lists, etc., and all approaches are legitimate
in order to implement and run as efficiently as possible some “quantum programs”. But we took another
approach, whose advantage is that the vector structure of the state models arisesnaturally, that it is adaptable
to any quantum systems, not only to qubits (or other discrete, finite sets of configurations), and moreover,
it corresponds quite faithfully to models of quantum calculi used by physicists. States are functions.

A functor which takes a configurationα to a Hilbert space vector is the Haskell functional we callket .
If a “bit” is defined by thedata QBit = B0 | B1 , thenket B1 is |1〉. The construction ofket is
indirect, before its definition, and before unveiling its type, we shall construct first the co-vectors〈α|, which
we callaxes, equivalent (but not identical) to Dirac bras, which will come later, as linear functionals over
kets. We use a variant of construction known sometimes asKolmogorov dilation theorem. Suppose that the
“classical sector” of the world is equipped by a particular measure, which discerns between identical and
different configurations. For typical configurations we may define a kernel function calledbracket

bracket a b = if a==b then 1 else 0

i.e., the Kronecker delta. (We won’t need here more general definitions, but they are sometimes unavoid-
able.) The values 0 and 1 should be treated here — as it is usual in standard quantum mechanics —

1in the so called Schrödinger picture; in the alternativeand equivalentHeisenberg picture, states remain static, but operators
evolve:Â′ = UÂU+. All averages〈φ|Â|ψ〉 behave identically in both pictures.
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to be complex numbers; we assume that they belong to the typeScalar . If we rename nowaxis =
bracket , the form(axis alpha) is a unary function, and as such it constitutes naturally an element
of a vector space with operations(*>), (<+>) :

axis a <+> axis b = \c -> axis a c + axis b c
h *> axis a = \c -> h*axis a c

(We shall omit the definition of Haskell classVspace which specifies our overloaded operations.) In our
frameworkaxis alpha represents〈α|. In geometry typically co-vectors are functionals over vectors,
but since the Hilbert space permits a natural definition of dual objects, we reverse the construction. Kets are
functionals over axes:

ket alpha = \ax -> ax alpha

from which we assert

• Kets: (ket alpha ), being unary functions are natural vectors. We can superpose them.

• Ketsare linear functions:

ket a (ax1 <+> ax2) = (ax1 <+> ax2) a = ax1 a + ax2 a
= ket a ax1 + ket a ax2

And finally, we notice that the definition ofket is equivalent to the standard Fischer-Plotkin [12] lifting
functional of elementary values into the CPS domain. . . We may say that a state is a “quantum value”
awaiting its final continuation (the measurement), and that this continuation is the appropriate axis which
yields the final answer, the quantum probabilistic measure (the amplitude).

We promised to remain anti-speculative, but we cannot help expressing some conceptual observations.
In several papers one may find the term “quantum values”, and discussion about the information contents
of those entities. While physicists tend to avoid these issues, since they do not convey much operational
sense, in the domain of computations such discussions seem unavoidable, since the data structures used to
model quantum states and observables should be analyzed from this viewpoint, if we want to understand
the computational reversibility, the relation between the entropy and the decoherence, etc. Our framework
provides aminimalisticanswer to some of those questions. The information “hidden” inside is given by
the explicit semantics of the functions(ket alpha) (elementary kets) and their linear superpositions.
Our functional objects are the onlyontologicalentities we have, theyare fragments of the reality. Our
model of the quantum world is functional2, and we don’t need to add any artificial constraints in order
to prevent illicit “peeping inside quantum values” represented by classical datatypes. Moreover, functional
objects being opaque are prevented from being trivially duplicated, which may be related to the non-cloning
theorem.

2.1 Duality

2The question whether we think that the real quantum world is a functional entity must be left for long, evening discussions. . .
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|aKet〉 〈anAxis|

〈aBra|

dual

coax ket lower

Figure 1: Duality conversions

Filinski in his Master thesis [13] and elsewhere pointed out the
duality between (lifted) values and continuations. This becomes
particlarly trivial in the context of our linear geometry. Since
〈ψ|α〉 = 〈α|ψ〉∗, we may immediately construct an axis dual to a
ketpsi :

dual psi = \a -> conjugate (psi (axis a))

Moreover, it is straightforward tolift kets to their dual space, the
linear functionals which are bi-dual, thus isomorphic to axes, but
they act on kets. It is this space which may be considered as the domain of Dirac bras (but we shall use
them sparingly, axes and kets usually suffice). A bra is defined through

coax psi = \phi -> phi(dual psi)

or, even shorter, through an isomorphic lifting from axes:br = ket ax . Of course,coax=ket .
dual . Bras can be lowered to axes by

lower br = \a -> br (ket a) -- 〈br|α〉

and the diagram above is commutative. The proof thatket and lower are inverse is easy, but not en-
tirely trivial, it holds for elementary axes and kets, and is generalized thanks to the vector structure of the
framework. We have thus a full correspondence/duality between a quantum state and its measurement con-
text. The usage of the functionalket = flip id for the lifting of axes into bras suggest that we should
keep its type more polymorphic than restrictedket :: Qdom->(Qdom->Scalar)->Scalar , where
Qdomis some configuration domain, e.g.,Qbit . We might say that a co-vector (lifted to a bra) is the
“quantum value”, and a ket is its continuation.

Of course, one has to be quite cautionus with verbal analogies. In the language of categories and in
the geometrical framework we have the term “duality” with related, (or rather subsumed) but not identical
meaning. We shall see other similar cases, e.g. the term “linearity”, which means something a bit different
in geometry, and in the continuation theory, e.g., [14] (and in logic). To this collection we should add the
term “adjoint”.

3 Operators and Circuits

A quantum process in which the initial state|ψ〉0 is sequentially acted upon by some operatorsÂ, B̂, Ĉ,
and results in a state|ψ〉′ = ÂB̂Ĉ|ψ〉0, may be depicted as the following diagram: The time goes from

|ψ〉0CBA|ψ〉′

Figure 2: Chain of operators

right to the left. This is a convention contrary to that found in most other papers, but it corresponds better
to the textual representation of the depicted process.

In practical cases, the states are compound. Disconnected lines represent tensor products of states,
introduced in the next section. Separate boxes on product lines are tensor product operators. But in the
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presence of interactions, the lines get connected. The Fig. 3 represents two typical elementary quantum
gates, the “controlled not” and the Toffoli gate, and also their combination which realizes a 1-bit half-adder.
Of course, much more complicated circuits are needed in order to implement some non-trivial computations,

|x〉

|y〉

|x〉

|x⊕ y〉

|x〉

|y〉

|z〉

|x〉

|y〉

|xy ⊕ z〉

x1 x1

sum x0

?⊕carry ?

Figure 3: Controlled-not, Toffoli gate, and half-adder

it suffices to look the teleporting circuit on Fig. 4 [15], whereL,R, etc. boxes are one-qubit operators which
rotate, modifies the phase, or otherwise transform the appropriate state. For example,

S = i|0〉〈0| − |1〉〈1| , (1)

L = R+ = (|1〉〈0| − |0〉〈1|+ 1)/
√

2 , (2)

etc. It is not our purpose to discuss the details in this text. The functional representation of simple qubit
operators can be found in [8]. The diagrammatic approach to the synthesis of programs is of course quite
appealing, and the intuitive analogy between such diagrams, and the dataflow graphs representing electronic
circuits etc., is a meaningful psychological factor. However, one should be careful: the linesdo not transport
data, at least not the classical data (but what are non-classical ones?. . . ) What is interesting from the

|q1〉

|q2〉

|ψ〉 |0〉T

|0〉

|ψ〉S S R

L

measurement/decoherence

Figure 4: Brassard teleporting circuit

conceptual point of view, is the coexistence of two facts:

• The evolution is fully functional, moreover it is singly-threaded, ‘linear’ from the computational
point of view. Every state vector is used exactly once. (This is notonly the consequence of the
algebraic linearity of operators; in presence of fan-outs (cloning) the computational linearity would
break down.) If we want to speak about continuations, then they are linear.
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• From the physical perspective the model shall represent achanging, unique world, not a sequence of
state vectors which exist independently from each other.

One is tempted immediately to repeat the exclamation of Philip Wadler [16]. We don’t want to confuse
linear types and linear continuations, but conceptually they are both in the “used once” basket, [17], and for
us it suffices.

Also, as Martin Odersky said in [18]: “. . . we see that linear types have so far been better at changing
the world than at observing it”. But as physicists, it is exactly what we need! As we know, in quantum
physics we cannot gratuitously observe a state yielding a classical information about. Operatorsmust do
something to the state, and an observation terminates it (decoheres it, and entangles it with the observer,
whenceupon the description of the system irremediably ceases to be complete). Finally, if quantum me-
chanics is considered to be complete, states cannot be discarded in the middle of computation. All that
encourages us to think that linear continuations have strong potential to describe (model) typical quantum
processes.

How can wedefinetypical operators shown on the diagrams above? It seems difficult to create directly
a model of an operator (likeL or S above) which acts on kets:oper psi = ... (psi ...) , since
psi will have to be applied to some other vector, it is the only thing which can be done with it.

If we begin with a classical function, sayconst B0 , or cnot x = if x==B0 then B1 else
B0, then the lifting of such a functioncop to an operator acting on kets is

(lift cop) psi = \ax -> psi (\alpha -> ax (cop alpha))

or: lift = boost . boost , whereboost = flip (.) . This is not a Plotkin-style functional, but
the type pf the object surely is a typed “continued function”, as in [19]. Of course, more general operators
than those deducible from the classical poor subset are constructed – as the state vector themselves – through
linear superpositions. For practical operations it is easier to exploite the algebraic linearity directly, and to
begin the construction with operators acting on axes. Knowing that we have a natural mapping from vectors
to co-vectors (from kets to axes), it is obvious that we have dually a converting functional for operators, but
contravariant:

(lift1 aop) psi = \ax -> psi (aop ax)

In the domain of axes the, say, negation operation|0〉〈1|+ |1〉〈0| is implemented immediately:

anot ax = ax B0 *> axis B1 <+> ax B1 *> axis B0

It possesses the quality of Boolean negation, but it is a full-fledged linear operator. One not should forget
(in general case; here it is trivial) that lifting of an operator to a dual space produces its algbraic adjoint.

In the following section we shall see the relation between operators and tensor products.

4 Tensor states and operators

Quantum structures begin to be interesting for computations when they describe compound systems (multi-
qubit registers, etc.). As mentioned above, for two non-interacting susbsystems the global state is given
by the tensor product [20],|φ〉|ψ〉 (noted simply as|φ〉 ⊗ |ψ〉, or |φψ〉)which in functional spaces has a
straightforward implementation; ifpsi = \ax -> psi ax , etc., then

phi <*> psi = \ax ay -> phi ax * psi ay
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We are obliged to deal withn-ary functions, and so, with compound final continuations. The associativity
is obvious, and the twist (argument flip) isomorphism as well. A more fundamental comment first. The
tensor product of two states is not a Cartesian product, simply it isnot a categorical product; there are
no projections to individual components. Often, when presenting an introduction to quantum computing
people say: if we have an interacting system, capable of producing anentangledstate (not a tensor product),
say, |0〉|0〉 + |1〉|1〉, then the system becomes non-separable, we cannot extract the individual states, the
decoherence of one component influences the second one, etc. All this is true.

But the issue is thateven without interactionswe cannot extract individual pure states from a tensor
product! The structure of themodelof quantum reality is such that states are global, despite fact that ob-
servation of one sub-system does not influence materially the other one (and that they can be observed
separately). This is one of the biggest mysteries of the quantum conceptual picture, and it is deeper than
the properties of entangled states, although it is the presence of entanglement which makes the story oper-
ationally non-trivial. Once more: A complete model (computer or other) of a compound quantum system
cannot be split in independent fragments dealing separately with the subsystems, they possessone, shared
global state. The duals of tensor states may be constructed through

(dual_2 psip) = \alpha beta ->
conjugate (psip (axis alpha) (axis beta))

This is a one object, a 2-axis. It cannot be directly considered as the continuation of a 2-ket, which needs 2
arguments. It can be practically used for calculating the state vector norm (in finitely-dimensional Hilbert
spaces), but the connexion between duals and continuations should be re-analyzed. . .

A1

A2

Figure 5: Compound operators

Operators acting independently on subsets of “lines” are also prod-
ucts. Tensor products of operators acting on kets are constructed in a
straightforward way from the adjoints acting on axes, by a multilinear
lifting. For example,

lift_2 ao1 ao2 psip =
\ax1 ax2 -> psip (ao1 ax1) (ao2 ax2)

which can be generalized to any number of arguments, and linearly
combined into non-factorized operators. The paper [8] defines the ap-
propriate constructor classes, permitting such tensor multiplications in
the general case. The drawing at the right is an example of such a composite operator. From the adjoint
perspective the constructionlift_2 ao1 ao2 might be seen as something whichproducestwo outputs,
implemented as an object whichconsumes the consumerof two inputs.

One doesn’t need compound state vectors in order to see the relevance of tensor products. Already
the single-ket operators may be considered as tensor products, constituted out of projectorsP̂ = |α〉〈β|.
The Dirac notation is handy on paper, such forms may act either on vectors or on co-vectors, and yield the
appropriate scalar products,̂P |ψ〉 = 〈β|ψ〉|α〉, andP̂ 〈φ| = 〈φ|α〉|β〉 (a physicist would write:〈φ|P̂ ; in
Dirac notation the operators might act on their left (covector)argument, as adjoints), but the implementation
must specialize the variant. If we want to construct an operator acting on axes fromketb representing|β〉,
andaxa : 〈α|, then the construction is

ax_proj = \ax -> (ketb ax) *> axa

Of course, the dual variant iskt_proj=\psi -> (ket axa psi)*>ketb . In both cases they im-
plement the well known equivalence in linear logic, restricted in this case toA ( A ∼= A⊥⊗A, whereA is
either the type of axes or of kets. According to [21] this holds incompactautonomous categories, meaning
here the finite dimension of our vector spaces. The tensor structure of our formalism needs further work.
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5 Conclusions

From a certain distance, the dominant role of continuations in our model of quantum processes is utterly
trivial, and may be traced back to Church. After all, if basic entities in the framework are functions, then
— as in the lambda-calculus — the only way todo something to themis to apply them. Also, the linearity
of operations in vector spaces and the computational linearity are strongly related, see [21].

Thus, most of the continuation properties “discovered” in our model can be formalized in categorical
language, as we can see in [21]. We have avoided more formalization not because we think it is redundant,
but we are simply not yet ready for it.

We exposed just a bridge which seems quite intuitive, but not very well developed for human reasons:
the overlap between people interested in the theory of computations, and those who treat seriously the
mathematical structures pertinent to the quantum theory, remains rather limited, although Girard’s papers
on Geometry of Interactions include examples dealing with Hilbert spaces, which would be immediately
related to quanta by a reader oriented towards theoretical physics. Rare are attempts to marry both domains,
see however [22] and other works of Vaughan Pratt who claims that linear logic and “quantum logic” are
intimately related. All this needs further investigation.

From our personal perspective it is fascinating that formalisms developed in the crystal halls of logic,
categories, and the theory of computation, may find some usage in the practice of quantum calculi, and we
hope that one day they will influence the teaching of quantum mechanics as well. Of course, there is always
a danger of ‘philosophical abuse’, and the confusion between the reality and the model, but, on the other
hand, if we believe that the linear continuation semantics is somethingnatural in our vision of quantum
processes, we might begin to think differently about the information contents of quantum states.
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