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1 Introduction

Independently of the hope to speed-up some hard algorithms, and of the possibility that quantum pro-
grammable devices will help to simulate other quantum systems, computer scientists continue their in-
terest in the domain ofquantum computingand its simulation because implementable constructions help
to shorten the gap between our formal understanding of quantum entities, and the sense of their models.
Besides, the theory of algorithms realizable on quantum devices isper sean interesting study topic.

We implemented in Haskell a formalism permitting to “put into the computer” quantum states and
operators, usingfunctional objects. Our approach relies on standard properties of quantum theory, we
simply “jumped into” the category of Hilbert spaces in order to implement some standard quantum calculi.
Within this framework, the chain of transformations of quantum states bears a striking resemblance to
the continuation-passing protocol with linear continuations. While this is a preliminary work, and not
everything is clear, this resemblance is not accidental, and may be fruitful. We will arrive at CPS in a
natural way, using universal (thus: weak) properties of functions representing quantum entities. The main
motivation to present this work is that we haven’t seen this analogy in easily accessible literature. We don’t
plan to add anything new to the theory of programming with continuations, we just hope that this protocol
is a promising approach in applications related to the modelling of quantum processes.

2 Quantization, the Functional Way

The configuration (state) of a classical system is a setα of parameters: the position~p of a particle, the
excitation leveln of an atom, the values↓ or ↑ of a binary variableq which represents some model of
a bit, etc. In the quantum world thestate is a normalized vectorin a Hilbert space, whose basis is
usually parameterized by some classical configurations, so that we can call the basis vectors the “classically
measurable states”, say, a “ket”| ↑〉 in the Diracbra-ketnotation.

A qubitor another system may find itself in a superposed state|ψ〉 = g| ↓〉+ h| ↑〉 or g|0〉+ h|1〉 (with
indices ‘0’ and ‘1’ used for obvious reasons). The scalar product squared:|〈0|ψ〉|2 gives the probability
that in this state the measurement yields ‘0’. Thebra vector〈ψ| is the dual (co-vector) of|ψ〉. A quantum
system evolves by acting upon them with linear unitary operators:|ψ〉′ = U |ψ〉. The “evolution stops”
when the observer projects the final state on some physically justified basis, and gets some answer. It may
be an oracle-type answer (spin-up or down), or it may take the form of some probabilistic measure, after
having repeated the experiment many times on identically prepared states. Quantum states of independent
subsystems are tensor products of individual vectors:|100〉 ≡ |1〉 ⊗ |0〉 ⊗ |0〉, and operators acting on
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them are also tensor products. For interacting systems states are superpositions of such tensor states; their
separation into components may not be easy.

Computer (classical) realizations of quantum entities have many variants. In view of the simplicity of
the evolution process – just a linear algebra – the functional approaches seem particularly appropriate. The
data types used to store quantum states may be algebraic. But we took another approach, whose advantage
is that the vector structure of the state models arisesnaturally, that it is adaptable to any quantum systems,
not only to qubits (or other discrete, finite sets of configurations), and moreover, it corresponds faithfully to
models of quantum calculi used by physicists. States and operators are higher-order functions.

A functor which takes a configurationα to a Hilbert space vector is the Haskell functional we callket .
If a qubit is defined by thedata QBit = B0 | B1 , thenket B1 is |1〉. The construction ofket is
indirect, we shall construct first the co-vectors〈α|, which we callaxes, equivalent (but not identical) to
Dirac bras, which will come later, as linear functionals over kets. We use a variant of construction known
sometimes asKolmogorov dilation theorem. Suppose that the “classical sector” of the world is equipped
by a particular measure, which discerns between identical and different configurations. We may define a
kernel function calledbracket

bracket a b = if a==b then 1 else 0

i.e., the Kronecker delta. (We won’t need here more general definitions, but theyare useful.) The values 0
and 1 should be treated here — as it is usual — to be complex numbers; we assume that they belong to the
typeScalar . If we renameaxis = bracket , the form(axis alpha) is a unary function, and as
such it constitutes naturally an element of a vector space with operations(*>), (<+>) :

axis a <+> axis b = \c -> axis a c + axis b c
h *> axis a = \c -> h*axis a c

(We omit the definition of classes specifying the overloading.) In our frameworkaxis alpha represents
〈α|. In geometry typically co-vectors are functionals over vectors, but since the Hilbert space permits a
natural definition of dual objects, we reverse the construction. Kets are functionals over axes:

ket alpha = \ax -> ax alpha

from which we see that kets: (ket alpha ), being unary functions are natural vectors. We can superpose
them. Also, that theyare linear functions:

ket a (ax1 <+> ax2) = (ax1 <+> ax2) a = ket a ax1 + ket a ax2

We notice that the definition ofket is equivalent to the standard Fischer-Plotkin lifting functional of el-
ementary values into the CPS domain! We may say that a state is a “quantum value” awaiting its final
continuation (the measurement), and that this continuation is the appropriate axis which yields the answer,
the quantum probabilistic amplitude. The type ofket is ket :: a -> (a->Scalar) -> Scalar ,
wherea is the type of “classical values”, and theScalar is the “answer” type. (In fact, it is useful to keep
ket more polymorphic, needed for a more general lifting.)

2.1 Duality

Since〈ψ|α〉 = 〈α|ψ〉∗, we may immediately construct an axis dual to a ketpsi :

dual psi = \a -> conjugate (psi (axis a))
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It is also easy tolift kets to their dual space, functionals are bi-dual, thus isomorphic to axes, acting on kets.
This space is considered as the domain of Dirac bras. A bra is defined through

coax psi = \phi -> phi(dual psi)

|aKet〉 〈anAxis|

〈aBra|

dual

coax ket lower

Figure 1: Duality conversions

or, shorter, through a lifting from axes:br = ket ax . Of
course,coax=ket . dual . Bras can be lowered to axes by

lower br = \a -> br (ket a) -- 〈br|α〉

and the diagram at the right commutes. The proof thatket and
lower are inverse is easy, but not trivial, it holds for elementary
axes and kets, and is generalized thanks to the linearity. We have
thus a correspondence/duality between a quantum state and its
measurement context.

One has to be cautious. In the language of categories and in algebra we have the terms “duality”
or “adjoints” with related, (or subsumed) but not identical meaning, since we work within one, concrete
category. We shall see other similar cases, e.g. the term “linearity”, which means something different in
geometry, and in the continuation theory and in logic.

3 Operators and Circuits

A quantum process in which the initial state|ψ〉0 is sequentially acted upon by some operatorsÂ, B̂, Ĉ,
and results in a state|ψ〉′ = ÂB̂Ĉ|ψ〉0, may be depicted as the following diagram: The time goes from

|ψ〉0CBA|ψ〉′

Figure 2: Chain of operators

right to the left. In practical cases, the states are compound, disconnected lines represent tensor products of
states. We have also tensor product operators. But in the presence of interactions, the lines get connected.
Fig. 3 represents two elementary quantum gates, the “controlled not” and the Toffoli gate, and also their
combination: a 1-bit half-adder. More complicated circuits are needed in order to implement some non-

|x〉

|y〉

|x〉

|x⊕ y〉

|x〉

|y〉

|z〉

|x〉

|y〉

|xy ⊕ z〉

x1 x1

sum x0

?⊕carry ?

Figure 3: Controlled-not, Toffoli gate, and half-adder

trivial computations, it suffices to look the teleporting circuit on Fig. 4, whereL, R, etc. boxes are one-
qubit operators which rotate, or otherwise transform the state. E.g.,S = i|0〉〈0| − |1〉〈1|, L = R+ =
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(|1〉〈0| − |0〉〈1| + 1)/
√

2, etc. We cannot discuss the details. One should be careful: the linesdo not
transport classical data. What is conceptually interesting, is the observation:

|q1〉

|q2〉

|ψ〉 |0〉T

|0〉

|ψ〉S S R

L

measurement/decoherence

Figure 4: Brassard teleporting circuit

• The evolution is fully functional, moreover it is singly-threaded, ‘linear’ from the computational point
of view. Every state vector is used exactly once. If we want to speak about continuations, then they
are also linear. Vectors cannot be discarded in the middle of computation.

• From the physical perspective the model shall represent achanging, unique world, not a sequence of
state vectors which exist independently from each other.

This encourages us to think that linear continuations have strong potential to model typical quantum pro-
cesses. Adirectmodel of an operator is not immediate, since it should act on a function, finally its argument
should act onsomething. If we begin with a qubit function, sayconst B0 , or cnot x = if x==B0
then B1 else B0 , then the lifting of such a functioncop to an operator acting on kets is

(lift cop) psi = \ax -> psi (\alpha -> ax (cop alpha))

This is not a Plotkin-style functional, but the type of the object surely is a typed “continued function”. If
the lifting of a valuex is x = λk.k x, the appropriate lifting off = λx.f x, acting on lifted values, will
bef = λx k.x(λx.k(f x)). This is what we get, the formalism produces a linear “tail call” chain. More
general operators are constructed through linear superpositions. We note that the algebraic structure implies
also the computational linearity: continuations are linear, used once. The operators which act on kets can
be uniquely mapped to their adjoints, which arecontinuation transformers. They are also obviously linear.

4 Tensor states and operators

Quantum structures interesting for computations describe compound systems. For two non-interacting
subsystems the state is given by the tensor product,|φ〉|ψ〉 (noted simply as|φ〉 ⊗ |ψ〉, or |φψ〉)which in
functional spaces has a straightforward implementation; ifpsi = \ax -> psi ax , etc., then

psip = phi <*> psi = \ax ay -> phi ax * psi ay

We must deal withn-ary functions, and so, with “compound continuations”. The associativity is obvious,
and the twist (argument flip) isomorphism as well. This is not a Cartesian product, there are no projections
to individual components. Even without interactions we cannot extract individual states from it. We can of
course superpose them. The duals of compound states may be constructed through
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(dual_2 psip) = \alpha beta ->
conjugate (psip (axis alpha) (axis beta))

This is a one object, a 2-axis. It cannot be directly considered as the continuation of a 2-ket, which needs 2
arguments, and the connection between duals and continuations should be re-analyzed, but all the chaining
properties sketched above, hold.

A1

A2

Figure 5: Compound operators

Operators acting independently on subsets of lines are also prod-
ucts. Tensor operators acting on kets are constructed from theadjoints
acting on axes, by a multilinear lifting. For example,

lift_2 ao1 ao2 psip =
\ax1 ax2 -> psip (ao1 ax1) (ao2 ax2)

which can be generalized to any number of arguments, and linearly
combined into non-factorized operators. The drawing at the right is
an example of such a composite operator. From the adjoint perspec-
tive the constructionlift_2 ao1 ao2 might be seen as something
whichproducestwo outputs, implemented as an object whichconsumes the consumerof two inputs.

Finally, we see that already the (simple) single-ket operators may be considered as tensor products, the
projectorsP̂ = |α〉〈β|. The Dirac notation is handy on paper, such forms may act either on vectors or on
co-vectors (“from the right”, as adjoints), and yield the appropriate scalar products,P̂ |ψ〉 = 〈β|ψ〉|α〉, and
〈φ|P̂ = 〈φ|α〉〈β|, but the implementation must specialize the variant. If we want to construct an operator
acting on axes fromktb representing|β〉, andaxa denoting〈α|, then the construction is

ax_P = \ax -> (ktb ax) *> axa

The dual variant iskt_P=\psi -> (ket axa psi)*>ktb . In both cases they are tensor products.
This is analogous to the known equivalence in linear logic, restricted here toA ( A ∼= A⊥ ⊗ A, where
A is either the type of axes or of kets. The tensor structure of our formalism and its relation to linear logic
needs further work; according to Barr, the equivalence above holds in finitely-dimensional spaces (compact
categories) only. This might be not related directly to continuations. . .

5 Conclusions

From a certain distance, the dominant role of continuations in our model of quantum processes is obvious,
and may be traced back to Church. After all, if basic entities in the framework are functions, then — as
in the lambda-calculus — the only way todo something to themis to apply them. Strong relation between
the linearity of operations in vector spaces and the computational linearity is known. From the control
point of view the quantum circuits are rather simple, complications arise when we have to deal with the
probabilistic nature of measurements, but this part of the simulation has been omitted from these notes,
although it deserves our full attention.

We exposed just a bridge which seems quite intuitive, the continuations appearnaturally. From our
personal perspective it is interesting that formalisms developed within the theory of computation, may find
some usage in the practice of quantum calculi, and we hope that one day the functional programming will
influence the teaching of quantum mechanics as well.
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