
Proc. Estonian Acad. Sci. Phys. Math., 1998, 47, 3, 147—16 1

FUNCTIONAL PROGRAMMING WITH
APOMORPHISMS (CORECURSION)

Varmo VENE and Tarmo UUSTALUb

a Institute of Computer Science, University of Tartu, J. Liivi 2, EE-2484 Tartu, Estonia;
e-mail: varmo@cs.ut.ee

b Department of Teleinformatics, Royal Institute of Technology, Electrum 204, SE-164 40
Kista, Sweden; e-mail: tarmo@it.kth.se

Received 19 January 1998, in revised form 23 February 1998

Abstract. In the mainstream categorical approach to typed (total) functional programming,
functions with inductive source types defined by primitive recursion are called paramorphisms;
the utility of primitive recursion as a scheme for defining functions in programming is well
known. We draw attention to the dual notion of apomorphisms — functions with coinductive
target types defined by primitive corecursion and show on examples that primitive corecursion
is useful in programming.

Key words: typed (total) functional programming, categorical program calculation,
(co)datatypes, (co)recursion forms.

1. INTRODUCTION

This paper is about the categorical approach to typed (total) functional
programming where datatypes and codatatypes are modelled as initial algebras
and terminal coalgebras. Our object of study is the notion of apomorphisms,
which are functions with coinductive target types defined by primitive corecursion.
Apomorphisms are the dual of paramorphisms, functions with inductive source
types defined by primitive corecursion. The widely used term paramorphism was
introduced by Meertens [1] (irapa — Greek preposition meaning “near to”, “at the
side of”, “towards”), the term apomorphism is a novel invention of ours (airo
— Greek preposition meaning “apart from”, “far from”, “away from”). Our aim
is to show that apomorphisms are a convenient tool for a declaratively thinking
programmer, often more handy than anamorphisms, i.e. functions defined by

147

coiteration, in much the same way as paramorphisms are frequently superior to
catamorphisms, i.e. functions defined by iteration.

The tradition of categorical functional programming that we follow in this paper
started off with the Bird—Meertens formalism [2], which is a theory of the datatypes
of lists. Malcolm [3] and Fokkinga [4] generalized the approach for arbitrary
datatypes and codatatypes, inspired by the work of Hagino [5].

Geuvers [61 presents a thorough theoretical analysis of primitive recursion
versus iteration and demonstrates that this readily dualizes into an analysis of
primitive corecursion versus coiteration. In general, however, primitive corecursion
has largely been overlooked in the theoretical literature, e.g. Fokkinga [4] ignores
it, neither do we know of any papers containing interesting programming examples,
the most probable reason being the young age of programming with codatatypes.

We shall proceed as follows. In Section 2, we give a short introduction to
the categorical approach to (co)datatypes and (co)iteration and its application to
program calculation. In Section 3, we introduce the scheme of primitive recursion
for inductive types and prove several of its properties. Afterwards, by introducing
primitive corecursion, we dualize these results for the case of coinductive types and
show the usefulness of this scheme on several examples. Section 4 includes possible
directions for further work and conclusions.

Proofs in this paper are carried out in the structured calculational proof style [7].

2. (CO)DATATYPES AND (CO)ITERATION

2.1. Preliminaries

Throughout the paper C is the default category, in which we shall assume the
existence of finite products (x, 1) and coproducts (+, 0), as well as the distributivity
of products over coproducts (i.e. C is distributive). The typical example of a
distributive category is Sets — the category of sets and total functions.

We make use of the following quite standard notation. Given two objects A,
B, we write f St : A x B —* A and snd : A x B —* B to denote the left
and right projections for the product A x B. For f : C —* A and g C —* B,
pairing is the unique morphism (f,g) : C —* Ax B, such thatfsto (f,g) = f
and snd o (f, g) = g. The left and right injections for the coproduct A + B
arein]. : A —* A+Bandinr B —* A+B. Forf A — Cand
g B —* C, case analysis is the unique morphism [f, g] : A + B —* C,
such that { f, g J o ml = f and [f, gJ o mr = g. Besides, given an object C,
we have the unique morphism !c C —* 1. The inverse of the canonical map
[inlxidc,inrxidc]:(AxC)+(BxC) (A+B)xCis denoted by
distr: (A + B) x C —* (A x C) + (B x C). Finally, given a predicate p: A —*

1 + 1, the guardp? A —* A + A is defined as (snd + snd) o distr o (p, idA).
The identity functor is denoted by I. For a functor F : C —* C, its application

to a morphism f : A —* B is denoted by Ff : FA —* FB.

148

2.2. Dialgebras

Categorically, datatypes (of natural numbers, lists, etc.) are traditionally
modelled by initial algebras and codatatypes (of conatural numbers, colists, streams,
etc.) by terminal coalgebras. Hagino [5J introduced the notion of dialgebras
which generalizes both concepts and is rich enough also to model many-sorted
(co)algebras and bialgebras [4J•

Definition 1. Let F, G C —* C be endofunctors.

• F, G-dialgebra is a pair (A,), where A is an object and : F A —* GA is
a morphism of the default categoty C.

• Let (A,) and (B,) be F, G-dialgebras. A morphism f : A —* B of C
is an F, C-homomorphism from (A, ‘) to (B, ?/‘) if the following diagram
commutes:

FA GA

Ff Gf

FB -GB

(i.e. Gf o = o Ff).

It is easy to verify that the composition of two F, G-homomorphisms is
also an F, G-homomorphism. Moreover, the identity morphism idA : A —* A
is an F, G-homomorphism which is both a left and a right unit with respect to
composition. It follows that dialgebras and homomorphisms form a category.

Definition 2. Let F, G : C —* C be endofunctors.

• A category of F, G-dialgebras DiAlg(F, G) is a category where objects
are F, G-dialgebras and morphisms are F, C-homomorphisms. Composition
and identities are inherited from C. The categories of F-algebras and
G-coalgebras are defined as .Alg(F) = DiAlg(F, I) and CoAlg(G) =

DiAlg(I, C), respectively.

• An F, G-dialgebra is initial (resp. terminal) if it is initial (resp. terminal)
(as an object) in the category of F, G-dialgebras ViAlg(F, G). The initial
F-algebra is denoted by (jtF, inF), the terminal G-coalgebra is denoted by
(ziG, OutG).

Note that initial and terminal dialgebras may or may not exist. In fact, we even
do not know any simple criteria for their existence in the general case of dialgebras.
In case of algebras, an initial F-algebra is guaranteed to exist if a functor F is
w-(co)continuous. (A functor is w-(co)continuous if it preserves the (co)limits of
w-chains.) Dually, if a functor G is w-continuous, then a terminal G-coalgebra

149

is guaranteed to exist. All polynomial functors (i.e. functors which are built up
from products, sums, identity and constant functors) are w-(co)continuous and,
consequently, the corresponding initial algebras and terminal coalgebras exist. We
do not pursue this question any further here and refer the interested reader to {4]•

2.3. Initial algebras and catamorphisms

The existence of the initial F-algebra (pF, inp’) means that, for any F-algebra
(C, tb), there exists a unique homomorphism from (jAF, inF) to (C, &). Following
Fokkinga [4], we denote this homomorphism by ‘ , so ‘i,b F : F —* C is
characterized by the universal property

fojnF=oFf f—zb cata-CHARN.

The type information is summarized in the following diagram:

iflFFpF -,F

FJL_

Morphisms of the form J b F are called F-catamorphisms (derived from the
Greek preposition lcaTc meaning “downwards”); the construction . LF is an
iterator.

Example 1. Consider the datatype Nat of natural numbers, with constructor
functions zero : 1 —* Nat and succ : Nat —* Nat. It can be represented as an initial
N-algebra (Nat,[zero,succ]) = (N,inN), whereNX = 1 +X andNf
id1 + f. Given any N-algebra (C,[c,h]), the catamorphism f = J[c,hJ N is
the iteration f(n) = h’(c). For instance, the curried sum of two naturals can be
defined as

addn= i[n,succ]N.

Example 2. The datatype List A of finite lists over a given set A, with constructor
functions nil : 1 —* LiStA and cons : A x List A —p ListA, can be represented as
an initial algebra (LiStA, [nil, cons]) = (PLA, inLA), where LAX = 1 +(A x X)
and LA f = id1 +(idA x f). Given any LA-algebra (C, [c, h]), the catamorphism
f = J [c, h] LILA is an application of the standard fold function on lists. For any
function g A —* B, the function map g : ListA —* LiStB, for instance, can be
defined as

mapg = j[nil, C0fl5 o(g x idLjstA)]LA.

Catamorphisms obey several nice laws, of which the cancellation law, the
reflection law (also known as the identity law), and the fusion (or, promotion) law

150

are especially important for program calculation (the cancellation law describing a

certain program execution step):

J b F ° = o F ‘çb F cata-CANCEL

idF = -F cata-REFL

foço—_i,boFf foF=F cata-FUSION.

All three follow directly from the characterization cata-CHARN. These laws

(originally for the special case of lists) form the heart of the Bird—Meertens

formalism.
To show the usefulness of above-mentioned laws, we prove the following

lemma (first recorded by Lambek [81):

Lemma 1. The morphism : F iF —* pF is an isomorphism with the inverse

in1 = FiflFF : pF—> FpF.

Proof

lJFinFFoinF
= —cata-CANCEL—

inF0F1flFF FinFoFFinFF)
— cata-FUSI0N — = — F functor —

J’nF1F F(inFoFinFF)

— cata-REFL — = — above —

idF Fid,F
=

— F functor —

idF,LF

2.4. Terminal coalgebras and anamorphisms

The existence of the terminal G-coalgebra (z.’G, OutG) means that for any
other G-coalgebra (C,) there exists a unique homomorphism
from (C,) to (tiC, OutG). This homomorphism is usually denoted by []c, so

[‘]ci : C —* tiC is characterized by the universal property

OUtG ° f = Cf o E f = []G arla-CHARN

The type information is summarized in the following diagram:

C GC

11

jGf
out0

vG -GvG.

Morphisms of the form []c are called G-anamorphisms (derived from the Greek

preposition cwa meaning “upwards”; the name is due to Meijer [9]), and the

151

construction [•] G is a coiterator. Like catamorphisms, anamorphisms have various
properties including the following cancellation, reflection, and fusion laws:

OUtco[co]G=G[cO]GocO ana-CANCEL
idG = [OUtG]G ana-REFL
of=Gfo L]Gof=[92]c ana-FusIoN.

Also, outs is an isomorphism with the inverse out1 = [C OutG]G.

Example 3. Consider the codatatype Stream A of streams (infinite lists) over A,
with destructor functions head : StreamA —* A and tail : StreamA —*

StreamA. It can be represented as a terminal coalgebra (StreamA, (head, tail)) =

(VSA, OUtSA), where SA X = A x X and SA f = idA x f. Anamorphisms
are used to construct concrete streams. For instance, the stream of natural numbers
nats : 1 —* Stream Nat and “zipping” of two streams zip : Stream A x Stream B —+

StreamAXB can be defined as follows:

nats = [(idNat, SUCC)]sN0 o zero
zip = [(fst x fst, snd x snd) o (0UtSA x outsB)]SAxB•

Example 4. The codatatype of colists (possibly infinite lists) List’A
can be represented as a terminal coalgebra (YLA, outLA) of the functor
LA(X) = 1 + A x X. Given a predicate empty : List’A —* 1 + 1 and two partial
functions head’ : List’A —÷ A and tail’ : List’A —* List’A, the terminal coalgebra
morphism OUtLA can be defined as OUtLA = (! + (head’, tail’)) o empty?.
Anamorphisms for List’A correspond to applications of the unfold function from
functional programming.

3. PRIMITIVE (CO)RECURSION

Clearly, not every morphism f : 1uF —* C is a catamorphism by itself, which
means that the results of the previous section cannot be applied as they stand. For
instance, the factorial function specified by equations

fact(O) = 1
fact(n+1) = (n+1)*fact(n)

is not a catamorphism. The problem here is that, to compute the value of the factorial
for a given argument, one needs not only its value for the previous argument, but also
the previous argument itself. Meertens [1] has shown that any function which can
be characterized similarly to the factorial function is definable as the composition
of a left projection and a catamorphism. The relevant result is the following.

Lemma2. Givenf:,uF—*Candib:F(Cx.uF)---*C,

152

Proof

t foinF=&oF(f,idF)

f
=

— pairing —

fsto (f,id,F)
= —cata-CHARN—

(f,idF)o
— pairing —

(f o]flF,ifl)
= —Ffunctor—

(fo OFidF)
=

— pairing —

(f oin,in oF(sndo(f,idF)))
= —i,Ffunctor—

(‘‘ o F(f, idF), ° Fsndo F(f, idF))
=

— pairing —

(&,inFoFsnd)oF(f,idF)
fst o(i,inFoFsnd)jF

f=fsto(&,inFoFsnd)F

f °

= --

fst o (inF o Fsnd) F
=

— Cata-CANCEL —

fsto(’,inFoFsnd)oF(i&,inFoFsnd)F
=

— pairing, 2x —

= — , cata-FUSION —

sndo(’b,inFoFsnd)
=

— pairing —

inF o F snd
boF(f,JinFF)

=
— cata-REFL —

&oF(f,idF)

The left-hand side of the equivalence corresponds exactly to the specification
by primitive recursion. For instance, for the factorial function specification above,
it reads

fact o inN

= [succ o zero, mult o (idNat x succ)] o N (fact, idNot)

= [succ o zero, mult o (fact x succ)

153

and consequently we get the definition of the factorial

fact = fst o ([succ o zero, mult o (idNat X succ)], oN snd) N•

From the lemma above it follows that at least every primitive recursive function
can be represented using a catamorphism as the only recursive construction. In the
presence of exponentials, one can even define Ackennann’s function as a (higher
order) catamorphism, so the expressive power of the “language of catamorphisms”
is bigger than the class of primitively recursive functions. In fact, Howard [10]

has shown that the functions expressible in simply typed A-calculus extended with
inductive and coinductive types are precisely those provably total in the logic ID<
(the first-order arithmetic augmented by finitely-iterated inductive definitions).

3.1. Paramorphisms

To make programming and program reasoning easier, let us introduce a new

construction and find out its properties. For any morphism ‘ : F (C x pF) -4 C,
define a morphism (1 & [)F : F —* C by letting

= fst o(,inF oFSfld)[)F para-DEF.

Morphisms of the form (]9’ [)F are called F-paramorphisms (the name is due to

Meertens [1]). The construction (]• p’ is a primitive recursor.

From Lemma 2 we get the characterization of paramorphisms by the following
universal property:

f ° inF = o F (f, id,F) E f = :i b EF para-CHARN.

The type information is summarized in the following diagram:

FjF

F(fidF) I

F(CxpF)

Example 5. The factorial function can be defined as a paramorphism:

fact *] [siicc o zero, mult o (idNat x succ)] oN.

The calculational properties of paramorphisms are similar to those of
catamorphisms. In particular, we have “paramorphic” versions of the cancellation,

reflection, and fusion laws:

j’cbOF 0F para-CANCEL

:J inpO FfStF para-REFL

fo=boF(fxidF) = fo p= F para-FUSI0N.

154

The reflection law is proved by the following calculation:

idF
= —para-CHARN—

=
— F functor —

jflF0F1d1F
= —pairing—

jflF0F(fSt0(jdF,jdF))
= —Ffunctor—

1flF0FfSt0F(1dF,1dF)
JinFoFfstF

The fusion law is proved as follows:

foco=1/JoF(fxid,1F)
fo2F

= —para-CHARN—

foFoinF
= —para-CANCEL—

focooF(JcoF,idF)
= -3-

x idF)oF(LF,idF)
= —Ffunctor—

çboF((f x idF)o(FF,idF))
= -pairing—

çboF(fo(ço[)p,idF)

By definition, every paramorphism is the composition of left projection and a
catamorphism. In converse, paramorphisms can be viewed as a generalization
of catamorphisms, in the sense that every catamorphism is definable as a certain
paramorphism:

bF=b0FfStF para-CATA.

155

This property can be verified by the following calculation:

‘:1 i,b F

= —para-CHARN—

t:1 b F °

= — cata-CANCEL —

IOF&)F

— pairing —

‘çboF(fsto (&F,id,LF))
= — F functor —

o Ffst oF (i,b F,idzF)

1J’oFfstF

3.2. Apomorphisms

Let us now dualize everything we know about paramorphisms. For any

morphism p : C —* C (C + vG), define a morphism K cp)] : C —* i.’G as the

composition of a certain anamorphism and left injection:

C,OQ = [[,GinrooutG]]Goin1 apo-DEF.

Let us agree to call morphisms of the form G-apomorphisnis. The

construction
•

is, of course, a primitive corecursor. The characterizing universal

property for apomorphisms is the following:

outGOf=G[f,idG]Oco f—ço apO-CHARN.

The type information is summarized in the following diagram:

C -G(C+vG)

ij, j,G[fi&.oJ

ziG
out

- GziG

The laws for apomorphisms are just the duals of those for paramorphisms:

OUtQOOG =G[G,id,Q]o apO-CANCEL

idG = C ml 0 OUtG G apo-REFL

bof = G(f+idc)o =‘ QOf
= PG apo-FUsION.

As paramorphisms are a generalization of catamorphisms, apomorphisms are a

generalization of anamorphisms:

[So]G=Gin1oG apo-ANA.

156

Example 6. Consider the function maphd f: Stream A —* Stream A which maps
a function f : A —+ A onto the head of a stream and leaves the tail of the stream
unchanged. Using anamorphisms, it can be defined as follows:

maphdf=[[(fohead,inrotail),(head,inrotail)]]SAoinl.

Clearly, such definition is not very convenient, as the tail of the resulting stream,
which is unchanged, is also constructed element by element. At the same time, using
apomorphisms, the definition looks as follows:

maphd f = (f x inr) o OUtSA SA

= (fohead,inrotail)SA.

Now, the tail of the stream is returned directly without any inspection inside of it.

Example 7. Assume that the set A is ordered linearly by a relation () : A x A —*

1+1. The function insert : A x StreamA —* StreamA that inserts a given element
into a sorted stream so that the result will also be sorted is specified as follows:

(head, tail) o insert o (x, ys)

f (x,ys) ifxheadoys

— (head o ys, insert o (x, tail o ys)) otherwise

In this specification, the input stream is traversed and copied to the output stream
elementwise to the point at which the input element is inserted; the remainder of
the input stream is entered to the output stream as one whole. Formally, this idea is
captured by the following categorical definition:

insert o (x, ys) [(x o!, inr), (idA x ml)] o test(x) SA
°

where test(x) : Stream A — Stream A + SA Stream A

test(x) = (f St + snd) o ((<) o (x a!, fst 0 snd))? 0 (idSirearnA, 0UtSA).

Example 8. Consider the function on colists concat : List’A x List’A —* List’A
which concatenates two colists. It is naturally representable as an apomorphism
which copies the first colist and, while arriving at the end of it, returns the second
one:

concato(x,y)=[LAinrooutLAoy,inr]oLAinlooutLjLAox.

In order to illustrate the utility of the laws introduced above, we show that the
concatenation of colists is associative:

concat 0 (concat 0 (x,y),z) = concat 0 (x, concat 0 (y,z)).

157

First, let us introduce a shorthand notation for the apomorphism occurring in the
definition of the function concat:

c(y) = {LAirJ.r 0 OUtj 0 inr] 0 LAinl 0 OUt LA

So, the definition of coricat is equivalent to coricat o (x, y) = c(y) o x, and the
equation we want to prove looks as follows:

c(z) oc(y) ox = c(c(z) oy) ox.

The proof is carried out according to the following informal plan. First, we twice
use the apomorphism characterization to “open” the bodies of both apomorphisms
on the left-hand side of the equation. Then we “push” all subexpressions as far
to the right as possible and simplify the resulting expression. Finally, we “pull”
the simplified subexpressions back to the left and use again the characterization of
apomorphisms to “close” their bodies. When “pushing” subexpressions through the
case operation, we shall repeatedly use the following intermediate result about the
functor LA:

LA[f, idLj3Jo [LA mr og,inr] o LA ml = [g, inr] OLAf. (*)

The validity of the equation (*) follows directly from the definition of the functor
LA and the properties of the coproduct:

LA [f, idLjstlA 1 o [LA mr o g, inr] o LA ml
=

— case analysis —

[LA [f, idLt 1 o LAinr o g, LA [f, idL5t] o inr] o LA ml
=

— LA functor, case analysis, LA functor —

[g,LA [f, idLIst 1 o mnr] o LA ml
=

— def. of LA, case analysis —

[g, mo (idA x [f, idLjst 1)1 o LA ml
=

— case analysis —

[g, inrj o (idi + (idA x [f, idLjstlA 1)) o LA ml

= —def.ofLA—
{g, inr] o LA {f, idLjstIA 10 LA ml

=
— LA functor, case analysis —

[g,inr}oLAf

158

Now, the proof of associativity is the following:

c(z) oc(y) ox
= —def. of c, apo-CHARN—

OUtLA o c(z) o c(y)

=
— def. of c, apO-CANCEL —

LA[C(Z), idListiA] o [LA inro OUtLA o z, jar] o LA ml
o OUtLA ° c(y)

= _(*)_

[OUtLA o z, inr] o LA (c(z)) o OUtLA ° c(y)

=
— def. of c, apo-CANCEL —

[outLA o z, inr] o LA (c(z)) o LA[c(y), idLjti] o

o [LA mro OUtLA o y, inn o LA in]. o OUtLA
= _(*)_

[outLA o z, inn o LA (c(z)) o [outLA o y, inn] o LA (c(y))
o OUtLA

=
— case analysis, def. of LA —

[OUtLA o z, inn] o [LA (c(z)) o OUtLA o y, inrj o LA (c(z))

o LA (c(y)) o OUtLA
=

— case analysis, LA functor —

[[outLA o z, inr] o LA (c(z)) o OUtLA o y, inn] o LA (c(z)

oc(y)) a OUtLA
= _(*)_

[LA [c(z), idListlA] o [LA inn o OUtLA o z, inn] o LA in].

OOUtLA o y, inn] o LA (c(z) a c(y)) 0 OUtLA

— apO-CANCEL, def. of c —

[OUtLA o c(z) o y, jar] o LA (c(z) o c(y)) o OUtLA
= _(*)_

LA [c(z) o c(y), idListA] o [LA inn 0 OUtLA o c(z) o y, inn]
0 Linl a OUtLA

c(c(z) a y) o x

4. CONCLUSIONS AND FURTHER WORK

We have described the notion of primitive corecursion for coinductive types that
is dual to primitive recursion for inductive types. Both of them are generalizations
of more basic operations — iteration and coiteration, respectively. While the value
of an iterative function for a given argument depends solely on the values for its
immediate subparts, the value of a primitive recursive function may additionally
depend on these immediate subparts directly. Dually, the argument of a coiterative
function for a value may only determine the arguments for the immediate subparts
of the value, whereas the argument of a primitive corecursive function may
alternatively determine these immediate subparts directly. Primitive corecursion,

159

being more permissive than coiteration, makes it easier to write programs and to
prove properties about programs.

Codatatypes and related notions such as coinduction and bisimulation are

widely used in the analysis of processes specifiable by transition systems or state
machines [11]. If processes are understood as functions from states to behaviours,
sequential composition of two processes becomes a natural example of a function
elegantly definable as an apomorphism. This leads us to believe that apomorphisms
may turn out a viable construction in the modelling of processes. Checking out this
conjecture is one possible direction for continuing the work reported here.

[12] we studied programming with (co)inductive types in the setting
of intuitionistic natural deduction. Besides simple (co)iteration and primitive
(co)recursion, we also considered course-of-value (co)iteration. A categorical
treatment of these schemes is a subject for further work.

ACKNOWLEDGEMENTS

The authors are grateful to their anonymous referee for a very constructive and
helpful review. The work reported here was partially supported by the Estonian
Science Foundation under grant No. 2976. The diagrams were produced using the
Xy-pic macro package by Kristoffer H. Rose.

REFERENCES

1. Meertens, L. Paramorphisms. FormalAspects Comp., 1992,4,5, 413—424.
2. Bird, R. An introduction to the theory of lists. In Logic of Programming and Calculi of

Discrete Design (Broy, M., ed.). NATO AS! Series F. Springer-Verlag, Berlin, 1987,
36, 5—42.

3. Malcolm, G. Data structures and program transformation. Sci. Comput. Programming,
1990, 14, 2—3, 255—279.

4. Fokkinga, M. M. Law and Order in Algorithmics. PhD thesis, Dept. of Informatics,
University of Twente, 1992.

5. Hagino, T. A Categorical Programming Language. PhD thesis CST-47-87, Laboratory of
Foundations of Computer Science, Dept. of Computer Science, Univ. of Edinburgh,
1987.

6. Geuvers, H. Inductive and coinductive types with iteration and recursion. In Infonnal
Proceedings of the Workshop on Types for Proofs and Programs, Bâstad, Sweden,
8—12 June 1992 (Nordstrom, B., Pettersson, K., and Plotkin, G., eds.). Dept. of
Computing Science, Chalmers Univ. of Technology and Goteborg Univ., 1992, 193—
217; URL ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/.

7. Grundy, J. A browsable format for proof presentation. Mathesis Universalis, 1996,2; URL
http://saxon.pip.com.plfMathUniversalis/2/.

8. Lambek, J. A fixpoint theorem for complete categories. Math. Z, 1968, 103, 151—161.
9. Meijer, E., Fokkinga, M. M., and Paterson, R. Functional programming with Bananas,

Lenses, Envelopes and Barbed wire. FPCA9J: Functional Programming Languages
and ComputerArchitecture. Springer, 1991, LNCS 523, 124—144.

160

10. Howard, B. T. Inductive, coinductive and pointed types. In Proceedings of the 1st ACM
SIGPL4N Intl. Conf on Functional Programming, ICFP ‘96, Philadelphia, PA, USA,
24—26 May 1996. ACM Press, New York, 1996, 102—109.

11. Jacobs, B. and Rutten, J. A tutorial on (co)algebras and (co)induction. Bull. EATCS, 1997,
62, 222—259.

12. Uustalu, T. and Vene, V. A cube of proof systems for the intuitionistic predicate z,v-Logic.
In Selected Papersfrom the 8th Nordic Workshop on Programming Theory, NWPT’96,

Oslo, Norway, 4—6 Dec1996 (Haveraaen, M. and Owe, 0., eds.). Research Report 248,
Dept. of Informatics, Univ. of Oslo, 1997, 237—246.

FUNKTSIONAALPROGRAMMEERIMINE APOMORFISMIDEGA
(KOREKURSIOONIGA)

Varmo VENEja Tarmo UUSTALU

On käsitletud kategooriate teoreetilist Iahenemist tuUpidega funktsionaal

programmeerimises, kus andmettiupe ja koandmetuupe modelleeritalcse vastavalt

initsiaalsete algebratena fling terminaalsete koalgebratena. Peamiseks uurimis

objektiks on apomorfismid kui funktsioonid, mis on defineeritud lihtkorekursiooni

skeemi abil. Apomorfismid on duaalsed lihtrekursiooniskeemi abil deflneeritavate

funktsioonidega — paramorfismidega. Sel ajal kui paramorfismid on leidnud laial

dast käsitlemist nh teoorias kui ka praktikas, on apomorflsmid seni suhteliselt

tagasihoidlikku tahelepanu palvinud. Siinses töös on näidatud, et apomorflsmi

del on mitmed olulised algebralised omadused, mis lihtsustavad korekursiivselt

defineeritavate funktsioonide formaalset käsitlemist. Samuti on vaadeldud reaal

seid näiteid koandmetuupidega funktsionaalprogrammeerimisest, kus apomorfis

mid (korekursioon) on kasulikud konstruktsioonid.

161

