tional Frogramming, September & 10, 1994, Ayr, Scotland. OSpringer
Workshops in Computing, 1995.

A Tutorial on Co-induction and
Functional Programming

Andrew D. Gordon*
University of Cambridge Computer Laboratory,
New Museums Site, Cambridge CB2 3QG, United Kingdom.

adg@cl.cam.ac.uk

Abstract

Co-induction is an important tool for reasoning about unbounded
structures. This tutorial explains the foundations of co-induction, and
shows how it justifies intuitive arguments about lazy streams, of central
importance to lazy functional programmers. We explain from first prin-
ciples a theory based on a new formulation of bisimilarity for functional
programs, which coincides exactly with Morris-style contextual equiva-
lence. We show how to prove properties of lazy streams by co-induction
and derive Bird and Wadler’s Take Lemma, a well-known proof technique
for lazy streams.

The aim of this paper is to explain why co-inductive definitions and proofs by
co-induction are useful to functional programmers.
Co-induction is dual to induction. To say a set is inductively defined just
means it is the least solution of a certain form of inequation. For instance, the
set of natural numbers N is the least solution (ordered by set inclusion, C) of
the inequation

{0}U{S() |z € X} C X. (1)
The corresponding induction principle just says that if some other set sat-
isfies the inequation, then it contains the inductively defined set. To prove a
property of all numbers, let X be the set of numbers with that property and
show that X satisfies inequation (1). If so then N C X, since N is the least
such set. This is simply mathematical induction.
Dually, a set is co-inductively defined if it is the greatest solution of a certain
form of inequation. For instance, suppose that ~ is the reduction relation in a
functional language. The set of divergent programs, 1, is the greatest solution
of the inequation

X C {a|3Ila~b&be X)}. (2)
The corresponding co-induction principle is just that if some other set satis-
fies the inequation, then the co-inductively defined set contains it. For instance,

*Royal Society University Research Fellow.

suppose that program) reduces to itself, that is, Q ~» Q. To see that is
contained in 1, consider set X = {Q}. Since X satisfies inequation (2), X C 1,
as 1 is the greatest such set. Hence (2 is a member of 1.

Bisimilarity is an equality based on operational behaviour. This paper seeks
to explain why bisimilarity is an important co-inductive definition for func-
tional programmers. Bisimilarity was introduced into computer science by
Park (1981) and developed by Milner in his theory of CCS (1989). Bisimi-
larity in CCS is based on labelled transitions. A transition a —— b means that
program (process) a can perform an observable action « to become successor
program b. Any program gives rise to a (possibly infinite) derivation tree,
whose nodes are programs and whose arcs are transitions, labelled by actions.
Two programs are bisimilar if they root the same derivation trees, when one
ignores the syntactic structure at the nodes. Bisimilarity is a way to compare
behaviour, represented by actions, whilst discarding syntactic structure.

Contextual equivalence (Morris 1968) is widely accepted as the natural notion
of operational equivalence for PCF-like languages (Milner 1977; Plotkin 1977).
Two programs are contextually equivalent if, whenever they are each inserted
into a hole in a larger program of integer type, the resulting programs either
both converge or both diverge. The main technical novelty of this paper is
to show how to define a labelled transition system for PCF-like languages (for
instance, Miranda and Haskell) such that bisimilarity—operationally-defined
behavioural equivalence—coincides with Morris’ contextual equivalence. By
virtue of this characterisation of contextual equivalence we can prove properties
of functional programs using co-induction. We intend in a series of examples
to show how co-induction formally captures and justifies intuitive operational
arguments.

We begin in Section 1 by showing how induction and co-induction derive, du-
ally, from the Tarski-Knaster fixpoint theorem. Section 2 introduces the small
call-by-name functional language, essentially PCF extended with pairing and
streams, that is the vehicle for the paper. We make two conventional definitions
of divergence and contextual equivalence. In Section 3 we make a co-inductive
definition of divergence, prove it equals the conventional one, and give an ex-
ample of a co-inductive proof. The heart of the paper is Section 4 in which
we introduce bisimilarity and prove it coincides with contextual equivalence.
We give examples of co-inductive proofs and state a collection of useful equa-
tional properties. We derive the Take Lemma of Bird and Wadler (1988) by
co-induction. Section 5 explains why bisimilarity is a precongruence, that is,
preserved by arbitrary contexts, using Howe’s method (1989). We summarise
the paper in Section 6 and discuss related work.

This paper is intended to introduce the basic ideas of bisimilarity and co-
induction from first principles. It should be possible to apply the theory devel-
oped in Section 4 without working through the details of Section 5, the hardest
of the paper. In a companion paper (Gordon 1994a) we develop further co-
inductive tools for functional programs. For more examples of bisimulation
proofs see Milner (1989) or Gordon (1994b), for instance.

Here are our mathematical conventions. As usual we regard a relation R on
a set X to be a subset of X x X. If R is a relation then we write z R y to
mean (z,y) € R. If R and R’ are both relations on X then we write RR' for
their relational composition, that is, the relation such that zRR'y iff there
is z such that R z and z R' y. If R is a relation then R°P is its opposite,
the relation such that x R°P y iff y R z. If R is a relation, we write R for its
transitive closure, and R* for its reflexive and transitive closure.

1 A Tutorial on Induction and Co-induction

Let U be some universal set and F' : p(U) — p(U) be a monotone function
(that is, F(X) C F(Y) whenever X C Y). Induction and co-induction are
dual proof principles that derive from the definition of a set to be the least or
greatest solution, respectively, of equations of the form X = F'(X).

First some definitions. A set X C U is F-closed iff F/(X) C X. Dually, a set
X CUis F-denseift X C F(X). A fixpoint of F' is a solution of the equation
X = F(X). Let uX. F(X) and vX. F(X) be the following subsets of U.

pX. F(X) &

vX.F(X)

Lemma 1

X | F(X) € X}

©ULX | X C F(X)}

(1) uX.F(X) is the least F-closed set.
(2) vX.F(X) is the greatest F-dense set.

Proof We prove (2); (1) follows by a dual argument. Since vX. F(X) con-
tains every F'-dense set by construction, we need only show that it is itself
F-dense, for which the following lemma suffices.

If every X; is F-dense, so is the union |J; X;.

Since X; C F(X;) for every i, |J,X; C |, F(X;). Since F is monotone,
F(X;) € F(U, X;) for each i. Therefore |J, F(X;) C F(J; X;), and so we
have | J; X; C F(UJ,; X;) by transitivity, that is, [J, X; is F-dense. []

Theorem 1 (Tarski-Knaster)

~—

(1) puX.F(X) is the least fizpoint of F'.
(2) vX.F(X) is the greatest fizpoint of F'.

Proof Again we prove (2) alone; (1) follows by a dual argument. Let
v = vX.F(X). We have v C F(v) by Lemma 1. So F(v) C F(F(v)) by
monotonicity of F. But then F(v) is F-dense, and therefore F(v) C v. Com-
bining the inequalities we have v = F(v); it is the greatest fixpoint because
any other is F-dense, and hence contained in v.]

We say that uX. F'(X), the least solution of X = F'(X), is the set inductively
defined by F, and dually, that vX. F(X), the greatest solution of X = F(X),
is the set co-inductively defined by F'. We obtain two dual proof principles
associated with these definitions.

Induction: uX. F(X)CX if X is F-closed.
Co-induction: X CvX.F(X) if X is F-dense.

Let us revisit the example of mathematical induction, mentioned in the intro-
duce. Suppose there is an element 0 € U and an injective function S : U — U.
If we define a monotone function F : p(U) — p(U) by

F(X) € {0}U{S(z) |z € X}

and set N & uX. F(X), the associated principle of induction is that N C X if

F(X) C X, which is to say that
N C X if both 0 € X and S(z) € X whenever z € X.

In other words, mathematical induction is a special case of this general frame-
work. Winskel (1993) shows in detail how structural induction and rule induc-
tion, proof principles familiar to computer scientists, are induction principles
obtained from particular kinds of inductive definition. As for examples of co-
induction, Sections 3 and 4 are devoted to co-inductive definitions of program
divergence and equivalence respectively. Aczel (1977) is the standard reference
on inductive definitions. Davey and Priestley (1990) give a more recent account
of fixpoint theory, including the Tarski-Knaster theorem.

2 A Small Functional Language

In this section we introduce a small call-by-name functional language. It is
PCF extended with pairing and streams, a core fragment of a lazy language
like Miranda or Haskell. We define its syntax, a type assignment relation, a
‘one-step’ reduction relation, ~», and a ‘big-step’ evaluation relation, {}.

Let z and y range over a countable set of variables. The types, A, B, and
expressions, e, are given by the following grammars.
A,B == Int|Bool|A— A|(4,A)][A]
e m= x|ee|lx:A.e|ifethenecelsee | k4 | Q4 | 64
where k ranges over a finite collection of builtin constants, () is the divergent
constant and § ranges over a finite collection of user-defined constants.

We assume these include map, iterate, take and filter; we give informal
definitions below. The builtin constants are listed below. We say that k4 is

admissable if k:A is an instance of one of the following schemas.

tt, ff : Bool i:Int
succ,pred: Int — Int zero:Int — Bool
fst:(A,B) > A snd: (4,B) - B

Pair: A — B — (A, B) Nil:[A]
Cons: A — [A] — [A] scase:B— (A—[A] - B) - [A - B

For each user-defined constant § we assume given a definition d:A def es. In
effect these are definitions by mutual recursion, as each body es can contain
occurrences of any constant; hence there is no need for an explicit fix operator.
We identify expressions up to alpha-conversion; that is, renaming of bound
variables. We write e[€/z] for the substitution of expression €’ for each variable
x free in expression e. A context, C, is an expression with one or more holes.
A hole is written as [] and we write C[e] for the outcome of filling each hole in
C with the expression e.

The type assignment relation
lkFe: A where T'is z1:41, ..., x,:A,,
is given inductively by rules of simply typed A-calculus plus
k4 admissable 5:A % e
Tkt A TFQY A Trg.4
T'lFe;:Bool I'key:A T'kFeg: A

'+ ife; theneyelsees: A

We assume that @ F es : A is derivable whenever §:4 def es is a definition of a
user-defined constant. Type assignment is unique in the sense that whenever
'e:AandT'Fe: B, then A = B.

Given the type assignment relation, we can construct the following universal
sets and relations.

Prog(A) def {e|@Fe: A} (programs of type A)
a,b € Prog def U4 Prog(A) (programs of any type)
Rel(A) def {(a,b) | {a,b} C Prog(A)} (total relation on A programs)
R,S C Rel def U4 Rel(A) (total relation on programs)

The operational semantics is a one-step reduction relation, ~» C Rel. Tt is
inductively defined by the axiom schemes

def

(Az.e)a ~ e[Yx] 0; ~ € if §; = e;
Q ~» Q if fthenay elseagy ~ a; €€ {it, ff}
succt~ i+ 1 predi+1~1¢
zero(Q ~ it zeroi~ ff ifi#0
fst (Pairab) ~ a snd (Pairab) ~ b

scase fDNil ~~ b scase f b(Consaas) ~ faas

together with the scheme of structural rules
a~>b
Ela) ~ E[b]

where £ is an experiment (a kind of atomic evaluation context (Felleisen
and Friedman 1986)), a context generated by the grammar

€ = []a|succ]|]|pred[]]|zero[]|if[]thenaelseb
| fst[]]|snd[]|scaseab][].

In other words the single structural rule above abbreviates eight different rules,
one for each kind of experiment. Together they specify a deterministic, call-by-
name evaluation strategy. Now we can make the usual definitions of evaluation,
convergence and divergence.

a~ Ib(a ~ b) ‘a reduces’

alb def a~~*b& —(b~) ‘a evaluates to b’
all ef Fb(a | b) ‘a converges’
af 4’ whenever a ~* b, then b ~» ‘a diverges’

By expanding the definition we can easily check that |} and f} are complemen-
tary, that is, aft iff —al}. We can characterise the answers returned by the
evaluation relation, |}, as follows. Let an ~» normal program be a program a
such that =(a ~). Let a value, u or v, be a program generated by the grammar

vi=Ar.e| k| ksa| ks ab where ky € {Pair, Cons, scase}.
Lemma 2 A program is a value iff it is ~ normal.

Proof By inspection, each value is clearly ~» normal. For the other direction,
one can easily prove by structural induction on a, that a is a value if it is ~~
normal. |

Two programs are contextually equivalent if they can be freely interchanged for
one another in a larger program, without changing its observable behaviour.
This is a form of Morris’ “extensional equivalence” (Morris 1968). Here is the
formal definition of contextual equivalence, ~ C Rel. Recall that C stands
for contexts.
a L b iff whenever (C[a],C[b]) € Rel(Int), that C[a]l} implies C[b]}.
a~b iff aCband bL a.

We have formalised ‘observable behaviour’ as termination at integer type. The
relation is unchanged if we specify that C[a] and C[b] should both evaluate to
the same integer. Contextual equivalence does not discriminate on grounds of
termination at function or pair type. For instance, we will be able to prove that
A8 ~ \z:A.QP. The two would be distinguished in a call-by-value setting,
since one diverges and the other converges, but in our call-by-name setting no
context of integer type can tell them apart.

We have introduced the syntax and operational semantics of a small functional
language. Our definitions of divergence and contextual equivalence are natural

and intuitive, but do not lend themselves to proof. In the next two sections
we develop co-inductive characterisations of both divergence and contextual
equivalence. Hence we obtain a theory admitting proofs of program properties
by co-induction.

3 A Co-inductive Definition of Divergence

We can characterise divergence co-inductively in terms of unbounded reduction.
Let D : p(Prog) — p(Prog) and 1 C Prog be

D(X) ¥ {a|Tb(a~b&be X)}
+ ¥ X DX)
We can easily see that D is monotone. Hence by its co-inductive definition we
have:

1 is the greatest D-dense set and 1 = D(1).

Hughes and Moran (1993) give an alternative, ‘big-step’, co-inductive formula-
tion of divergence.

As a simple example we can show that Q1. Let Xq def {Q}. Xq is D-dense, that
is, Xo C D(Xq), because Q ~ and 2 € Xq. So Xq C 1 by co-induction,
and therefore Q1.

We have an obligation to show that this co-inductive definition matches the
earlier one, that af} iff whenever a ~»* b, then b ~.

Theorem 2 {} = 1.

Proof (1 C {}). Suppose that af. We must show whenever a ~~* b, that
b ~~. If at, then a € D(1) so there is an ' with a ~ @’ and a'1. Furthermore
since reduction is deterministic, a’ is unique. Hence, whenever at and a ~* b
it must be that b1. Therefore b ~.

(t € 1). By co-induction it suffices to prove that set f} is D-dense. Suppose
that afy. Since a ~»* a, we have a ~~, that is, a ~» b for some b. But whenever
b ~* b’ it must be that a ~* b’ too, and in fact b’ ~~ since aft. Hence b{} too,
a € D(ft) and 1} is D-dense. []

4 A Co-inductive Definition of Equivalence

We begin with a labelled transition system that characterises the immediate
observations one can make of a program. It is defined in terms of the one-step
operational semantics, and in some sense characterises the interface between
the language’s interpreter and the outside world. It is a a family of relations
(%5 C Prog x Prog | a € Act), indexed by the set Act of actions. If we let

Lit, the set of literals, indexed by ¢, be {&t, ff}U{...,—2,—-1,0,1,2,.. .}, the

actions are given as follows.

a,B € Act e Litu {@Qa | a € Prog} U {fst,snd,Nil, hd, t1}
We partition the set of types into active and passive types. The intention is
that we can directly observe termination of programs of active type, but not
those of passive type. Let a type be active iff it has the form Bool, Int or [A].

Let a type be passive iff it has the form A — B or Pair A B. Arbitrarily we

define 0 % Q™. Given these definitions, the labelled transition system may

be defined inductively as follows.

ﬁL)O Ni1 M5 0 Consab % a Consab b

ab € Prog a € Prog((A, B)) a € Prog((A, B))

st a
ag)ab a - fsta a5 snda
n n (e !
a~a @ —a [g€ Prog(A)
a - a A active

The derivation tree of a program a is the potentially infinite tree whose nodes
are programs, whose arcs are labelled transitions, and which is rooted at a. For
instance, the trees of the constant Q4 are empty if A is active. In particular, the
tree of 0 is empty. We use 0 in defining the transition system to indicate that
after observing the value of a literal there is nothing more to observe. Following
Milner (1989), we wish to regard two programs as behaviourally equivalent iff
their derivation trees are isomorphic when we ignore the syntactic structure
of the programs labelling the nodes. We formalise this idea by requiring our
behavioural equivalence to be a relation ~ C Rel that satisfies property (x):
whenever (a,b) € Rel, a ~ b iff

(1) Whenever a =5 a' there is b’ with b %5 b and a' ~ b';
(2) Whenever b =5 b’ there is a’ with a == a’ and a' ~ b'.

In fact there are many such relations; the empty set is one. We are after
the largest or most generous such relation. We can define it co-inductively as
follows. First define two functions [—], (—) : p(Rel) — p(Rel) by

[S] ef {(a,b) | whenever a = a' there is b with b >+ b’ and a’ Sb'}

(8) © [SInfserer
where § C Rel. By examining element-wise expansions of these definitions, it
is not hard to check that a relation satisfies property () iff it is a fixpoint of
function (—). One can easily check that both functions [—] and (—) are mono-
tone. Hence what we seek, the greatest relation to satisfy (), does exist, and
equals vS. (S), the greatest fixpoint of (—). We make the following standard
definitions (Milner 1989).

e Bisimilarity, ~ C Rel, is vS. (S).

e A bisimulation is an (—)-dense relation.

Bisimilarity is the greatest bisimulation and ~ = (~). Again by expanding the
definitions we can see that relation S C Rel is a bisimulation iff a S b implies
e Whenever a - o' there is b with b - b’ and o’ S b';
e Whenever b — b’ there is a' with a —— a’ and @’ SV'.
An asymmetric version of bisimilarity is of interest too.
e Similarity, < C Rel, is vS.[S].

¢ A simulation is an [—]-dense relation.

We can easily establish the following basic facts.

Lemma 3

(1) < is a preorder and ~ an equivalence relation.
(@) ~=5ng.
(3) Both ~ C ~ and | C ~.

Proof These are easily proved by co-induction. We omit the details. Parts
(2) and (3) depend on the determinacy of ~». Part (1) corresponds to Propo-
sition 4.2 of Milner (1989). |

4.1 A co-inductive proof about lazy streams

To motivate study of bisimilarity, let us see how straightforward it is to use
co-induction to establish that two lazy streams are bisimilar. Suppose map and
iterate are a couple of builtin constants specified by the following equations.

map f Nil = Nil

map f (Cons x xs) = Cons (f x) (map f xs)

iterate f x = Cons x (iterate f (f x))

These could easily be turned into formal definitions of two user-defined con-
stants, but we omit the details. Pattern matching on streams would be accom-
plished using scase. Intuitively the streams

iterate f(fx) and mapf (iteratefu)
are equal, because they both consist of the sequence

fa, f(fx), FUF(F2), [(f2),

We cannot directly prove this equality by induction, because there is no ar-
gument to induct on. Instead we can easily prove it by co-induction, via the
following lemma.

Lemma 4 If S C Rel is

{(iterate f (f z),map f (iterate f z)) |
JA(x € Prog(A) & f € Prog(A — A))}

then (SU~) C(SU~).

Proof It suffices to show that S C (SU ~) and ~ C (S U ~). The latter is
obvious, as ~ = (~). To show § C (S U ~) we must consider arbitrary a and
b such that a S b, and establish that each transition a —— a' is matched by a
transition b —= b', such that either a’ S or a' ~ V', and vice versa. Suppose
then that a is iterate f (f z), and b is map f (iterate f). We can calculate
the following reductions.

a ~71 Cons(fz)(iterate f (f (fx)))
b ~T1 Cons(fz)(map f (iterate f (fx)))

Whenever a ~+* a' we can check that a —— a" iff ' %5 a”. Using the

reductions above we can enumerate all the transitions of a and b.
hd

a — fzx (1)
a 5 iterate f (f (fx)) (2)
b =% fa (3)
b - map f (iterate f (f) (4)

Now it is plain that (a,b) € (SU~). Transition (1) is matched by (3), and vice

versa, with fz ~ fx (since ~ is reflexive). Transition (2) is matched by (4),

and vice versa, with iterate f (f (f)) Smap f (iterate f (f z)). []

Since SU ~ is (—)-dense, it follows that (SU~) C ~. A corollary then is that
iterate f (f) ~ map f (iterate f z)

for any suitable f and z, what we set out to show.

4.2 Operational Extensionality

We have an obligation to show that bisimilarity, ~, equals contextual equiva-
lence, ~. The key fact we need is the following, that bisimilarity is a precon-
gruence.

Theorem 3 (Precongruence) If a ~ b then Cla] ~ C[b] for any suitable
context C. The same holds for similarity, <.

The proof is non-trivial; we shall postpone it till Section 5.

Lemma 5 L = <.

Proof (< C L) Suppose a < b, that (Cla],C[b]) € Rel(Int) and that Cla]{.
By precongruence, Cla] < C[b], so C[b]| too. Hence a 5 b as required.

(§ C <) This follows if we can prove that contextual order L is a simulation.

~

The details are not hard, and we omit them. For full details of a similar proof
see Lemma 4.29 of Gordon (1994b), which was based on Theorem 3 of Howe
(1989). []

Contextual equivalence and bisimilarity are the symmetrisations of contextual
order and similarity, respectively. Hence a corollary, usually known as oper-
ational extensionality (Bloom 1988), is that bisimilarity equals contextual

equivalence.

Theorem 4 (Operational Extensionality) ~ = ~.

4.3 A Theory of Bisimilarity

We have defined bisimilarity as a greatest fixpoint, shown it to be a co-inductive
characterisation of contextual equivalence, and illustrated how it admits co-
inductive proofs of lazy streams. In this section we shall note without proof
various equational properties needed in a theory of functional programming.
Proofs of similar properties, but for a different form of bisimilarity, can be
found in Gordon (1994b). We noted already that ~» C ~, which justifies a
collection of beta laws. We can easily prove the following unrestricted eta laws
by co-induction.

Proposition 1 (Eta) If a € Prog(A — B), a ~ Az.ax.

Proposition 2 (Surjective Pairing)

If a € Prog((A, B)), a ~ Pair (fsta) (snda).

Furthermore we have an unrestricted principle of extensionality for functions.

Proposition 3 (Extensionality) Suppose {f,g} C Prog(A — B). If fa ~
ga for any a € Prog(A), then f ~ g.
Here are two properties relating (2 and divergence.

Proposition 4 (Divergence)
(1) E[Q] ~ Q for any experiment &.
(2) If afy then a ~ (.

As promised, we can prove that Az:A.QF ~ Q428 in fact by proving
Az:A. QB ~ QA= B Consider any a € Prog(A). We have (Az:A.QP)a ~ QF
by beta reduction and Q475 a ~ QF by part (1) of the last proposition. Hence
Az:A. QP ~ Q478 by extensionality. In fact, then, the converse of (2) is false,

for Az:A. QB ~ Q428 but \z:A. QB .

We can easily prove the following adequacy result.

Proposition 5 (Adequacy) If a € Prog(A) and A is active, afy iff a ~ Q.

The condition that A be active is critical, because of our example \z:A. QP ~

OA~B for instance.

Every convergent program equals a value, but the syntax of values includes

partial applications of curried function constants. Instead we can characterise

each of the types by the simpler grammar of canonical programs.
c:=/{]|Ax.e|Pairab |Nil | Consab.

Proposition 6 (Exhaustion) For any program a € Prog(A) there is a canon-
ical program c with a ~ c iff either a converges or A is passive.

The A, Pair and Cons operations are injective in the following sense.

Proposition 7 (Canonical Freeness)
(1) If Ax:A.e ~ Az:A. e then e[%x] ~ €'[%x] for any a € Prog(A).
(2) If Pair ay as ~ Pair bl bg then ay ~ b1 and ag ~ bg.

(3) If Cons ay as ~ Cons bl bg then ay ~ b1 and ag ~ bg.

4.4 Bird and Wadler’s Take Lemma

Our final example in this paper is to derive Bird and Wadler’s Take Lemma
(1988) to illustrate how a proof principle usually derived by domain-theoretic
fixpoint induction follows also from co-induction.

We begin with the take function, which returns a finite approximation to an
infinite list.

take 0 xs = Nil
take n Nil = Nil
take (n+1) (Cons x xs) = Cons x (take n xs)

Here is the key lemma.

Lemma 6 Define S C Rel by aSb iff Vn € N(take n+ 1 a ~ taken + 1b).

(1) Whenever aSb and a | Nil, b | Nil too.

(2) Whenever aSb and a |} Consa' a” there are b’ and b" with b |} Cons b’ b",
a ~b andad" Sb".

3) (SU~) C(SU~).

Proof Recall that values of stream type take the form Nil or Consab. For
any program, a, of stream type, either aff or there is a value v with a | v.
Hence for any stream a, either a ~ Q (from aff by adequacy, Proposition 5) or
a {} Nil or a | Consa’a". Note also the following easily proved lemma about
transitions of programs of active type, such as streams.

Whenever a € Prog(A) and A active, a — b iff Ivalue v (a § v - b).

(1) Using aSb and n = 0 we have take 1 a ~ take 1 b. Since a |} Nil, we have
a ~ Nil, and in fact that Nil ~ take 1 b by definition of take. We know that
either b ~ €, b | Nil or b |} Cons b’ b”. The first and third possibilities would
contradict Nil ~ take 1 b, so it must be that b |} Nil.

(2) We have

taken + 1 (Cons a’ a") ~ taken + 1 b.
With n = 0 we have

Cons a' Nil ~ take 1 b

which rules out the possibilities that b ~ € or b | Nil, so it must be that
b | Cons b’ b". So we have

Cons a' (take n a”) ~ Cons b’ (take n b")

for any n, and hence a' ~ b" and a'' S b" by canonical freeness, Proposition 7.
(3) As before it suffices to prove that S C (S U ~). Suppose that a Sb. For
each transition a —* a' we must exhibit b’ satisfying b —= b’ and either o’ S ¥’
or a' ~ b'. Since a and b are streams, there are three possible actions « to
consider.

(1) Action « is Nil. Hence a |} Nil and o’ is 0. By part (1), b | Nil too.
Hence b 25 0, and 0 ~ 0 as required.

(2) Action « is hd. Hence a |} Cons a’ a”. By part (2), there are b’ and b"
with b |} Cons b’ b", hence b LN b', and in fact a’ ~ b' by part (2).

(3) Action « is t1. Hence a | Cons a' a'. By part (2), there are b’ and b"
with b |} Cons b’ b"', hence b BN b", and in fact a” Sb" by part (2).

This completes the proof of (3). []
The Take Lemma is a corollary of (3) by co-induction.

Theorem 5 (Take Lemma) Suppose a,b € Prog([A]).
Then a ~ b iff Vn € N(take n+ 1 a ~ taken +1b).

See Bird and Wadler (1988) and Sander (1992), for instance, for examples of
how the Take Lemma reduces a proof of equality of infinite streams to an
induction over all their finite approximations.

Example equations such as

map (f 0 g)as ~ map f (map g as)
(where o is function composition) in which the stream processing function pre-
serves the size of its argument are easily proved using either co-induction or the
Take Lemma. In either case we proceed by a simple case analysis of whether
asft, as | Nil or as |} Consaas’. Suppose however that filter f is the stream
processing function that returns a stream of all the elements a of its argument
such that fa | tt. Intuitively the following equation should hold

filter f (mapgas) ~ mapg (filter (fog) as)
but straightforward attacks on this problem using either the Take Lemma or

co-induction in the style of Lemma 4 fail. The trouble is that the result stream
may not have as many elements as the argument stream.

These proof attempts can be repaired by resorting to a more sophisticated
analysis of as than above. Lack of space prevents their inclusion, but in this way
we can obtain proofs of the equation using either the Take Lemma or a simple
co-induction. Alternatively, by more refined forms of co-induction developed
elsewhere (Gordon 1994a)—we can prove such equations using a simple-minded
case analysis of the behaviour of as. These proof principles need more effort to

justify than the Take Lemma, but in problems like the map/filter equation
are easier to use.

5 Proof that Bisimilarity is a Precongruence

In this section we make good our promise to show that bisimilarity and sim-
ilarity are precongruences, Theorem 3. We need to extend relations such as
bisimilarity to open expressions rather than simply programs. Let a proved
expression be a triple (I',e, A) such that T Fe: A. If ' = x1: 41, ..., 2,:4,,
a T-closure is a substitution -[@/Z] where each a; € Prog(A;). Now if R C Rel,
let its open extension, R°, be the least relation between proved expressions
such that

(T,e, A) R° (T, ¢, A) iff [@/z] R e'[@/z] for any I'-closure [d/z].

For instance, relation Rel® holds between any two proved expressions (T, e, A)
and (I, €', A") provided only that I' =I" and A = A'. As a matter of notation
we shall write I' F e R ¢’ : A to mean that (I',e, A) R (T, €', A) and, in fact, we
shall often omit the type information.

We need the following notion, of compatible refinement, to characterise what it
means for a relation on open expressions to be a precongruence. If R C Rel®,
its compatible refinement, R C Rel°, is defined inductively by the following
rules.

I'FeReifee {zkQ,0}
[Lz:AFeRe I'kelRe) ke Re,

Tk Az:A.e R Aa:A. € Tkeies Rele)
Tte;Re;, (i=1,2,3)

[k ife; theneyelsees R if €] thene) elsees

Define a relation R C Rel® to ‘be a precongruence iff it contains its own
compatible refinement, that is, R C R. This definition is equivalent to saying
that a relation is preserved by substitution into any context.

Lemma 7 Assume that R C Rel® is a preorder. R is a precongruence iff
't Cle] RCle'] whenever I'FeR e’ and C is a context.

The proof of the ‘only if’ direction is by induction on the size of context C; the
other direction is straightforward. Note that whenever a and b are programs
of type A, that a ~ b iff (&,a,A) ~° (&,b, A), and similarly for similarity, <.
Hence given the Lemma 7, to prove Theorem 3 it will/E)e enough to show that
~° and <° are precongruences, that is ~° C ~° and <° C <°,

We shall use a general method established by Howe (1989). First we prove
that the open extension of similarity is a precongruence. We define a second
relation <°, which by construction satisfies <* C <* and <° C <*. We prove
by co-induction that <* C <°. Hence <*® and <° are one and the same relation,

and <° is a precongruence because <* is.

Second we prove that the open extension of bisimilarity is a precongruence. Let
2 = <°. Recall Lemma 3(2), that ~ = <N 2. Furthermore ~° = <° N 2>°
follows by definition of open extension. We can easily prove another fact, that
RNS =RNS whenever R.,S C Rel°. We have

= (£N2°) = £°N2°C SNRT =

o

which is to say that ~° is a precongruence. Indeed, being an equivalence
relation, it is a congruence.

We have only sketched the first part, that <° is a precongruence. We devote the
remainder of this section to a more detailed account. Compatible refinment, z,
permits a concise inductive induction of Howe’s relation <®* C Rel® as uS.S<°,
which is to say that <® is the least relation to satisfy the rule

Fl—eg\'e” Tke" <€
ke

Sands (1992) found the following neat presentation of some basic properties of
<* from Howe’s paper.

Lemma 8 (Sands) <°® is the least relation closed under the rules

Fe<®e Fl—ef/j’e' Tke<*e ke <%¢
F'rFe<*e FFe<®e¢ FrFe<*e '

We claimed earlier that é\' C <* and <° C <°; these follow from the lemma.
The proof is routine, as is that of the following substitution lemma.

Lerpma 9 IfD,z:BF e <* e and D+ ¢ <*ey:B then I' F ey[¢i/z] <°
62[62/33].

What remains of Howe’s method is to prove that <* C <° which we do by
co-induction. First note the following lemma—which is the crux of the proof—
relating <® and transition.

Lemma 10 Let S & {(a,b) | @+ a S° b}

(1) Whenever aSb and a ~> a' then a’ Sb.

(2) Whenever aSb and a - a' there is b' with b > V' and o' SU'.

Proof The proofs are induction on the depth of inference of reduction a ~ a’
and transition @ —— a' respectively. Details of similar proofs may be found in
Howe (1989) and Gordon (1994b). []

By this lemma, S is a simulation, and hence & C < by co-induction. Open
extension is monotone, so §° C <°. Now <* C S° follows from the substitution
lemma (Lemma 9) and the reflexivity of <* (Lemma 8 and reflexivity of <°).
Hence we have <* C <°. But the reverse inclusion follows from Lemma 8, so
in fact <* = <° and hence <° is a precongruence.

6 Summary and Related Work

We explained the dual foundations of induction and co-induction. We defined
notions of divergence and contextual equivalence for a small functional lan-
guage, an extension of PCF. We gave co-inductive characterisations of both
divergence and contextual equivalence, and illustrated their utility by a series
of examples and properties. In particular we derived the ‘Take Lemma’ of Bird
and Wadler (1988). We explained Howe’s method for proving that bisimilar-
ity, our co-inductive formulation of contextual equivalence, is a precongruence.
We hope to have shown both by general principles and specific examples that
there is an easy path leading from the reduction rules that define a functional
language to a powerful theory of program equivalence based on co-induction.

Although our particular formulation is new, bisimilarity for functional lan-
guages is not. Often it is known as ‘applicative bisimulation’ and is based
on a natural semantics style evaluation relation. The earliest reference I can
find is to Abramsky’s unpublished 1984 work on Martin-Lof’s type theory,
which eventually led to his study of lazy lambda-calculus' (Abramsky and Ong
1993). Other work includes papers by Howe (1989), Smith (1991), Sands (1992,
1994), Ong (1993), Pitts and Stark (1993), Ritter and Pitts (1994), Crole and
Gordon (1994) and my book (1994b). The present formulation is the first to
coincide with contextual equivalence for PCF-like languages. It amounts to
a co-inductive generalisation of Milner’s original term model for PCF (1977).
Since it equals contextual equivalence it answers Turner’s (1990, Preface) con-
cern that Abramsky’s applicative bisimulation makes more distinctions than
are observable by well-typed program contexts.

Domain theory is one perspective on the foundations of lazy functional pro-
gramming; this paper offers another. Any subject benefits from multiple per-
spectives. In this case the two are of about equal expressiveness. Domain
theory is independent of syntax and operational semantics, and provides fix-
point induction for proving program properties. If we take care to distinguish
denotations from texts of programs, the theory of bisimilarity set out in Sec-
tion 4 can be paralleled by a theory based on a domain-theoretic denotational
semantics. Winskel (1993), for instance, shows how to prove adequacy for a
lazy language with recursive types (albeit one in which functions and pairs
are active types). Pitts (1994) develops a co-induction principle from domain
theory. On the other hand, Smith (1991) shows how operational methods
based on a form of bisimilarity can support fixpoint induction. One advantage
of the operational approach is that bisimilarity coincides exactly with contex-
tual equivalence. The corresponding property of a denotational semantics—full
abstraction—is notoriously hard to achieve (Ong 1994).

!The earliest presentation of lazy lambda-calculus appears to be Abramsky’s thesis (1987,
Chapter 6), in which he explains that the “main results of Chapter 6 were obtained in the
setting of Martin-L6f’s Domain Interpretation of his Type Theory, during and shortly after
a visit to Chalmers in March 1984.”

Acknowledgements

The idea of defining bisimilarity on a deterministic functional language via a
labelled transition system arose in joint work with Roy Crole (1994). Martin
Coen pointed out the map/filter example to me. I hold a Royal Society Uni-
versity Research Fellowship. This work has been partially supported by the
CEC TYPES BRA, but was begun while I was a member of the Program-
ming Methodology Group at Chalmers. I benefitted greatly from presenting a
tutorial on this work to the Functional Programming group at Glasgow Uni-
versity. I am grateful to colleagues at the Ayr workshop, and at Chalmers and
Cambridge, for many useful conversations.

References

Abramsky, S. (1987, October 5). Domain Theory and the Logic of Ob-
servable Properties. Ph. D. thesis, Queen Mary College, University of
London.

Abramsky, S. and L. Ong (1993). Full abstraction in the lazy lambda calculus.
Information and Computation 105, 159 267.

Aczel, P. (1977). An introduction to inductive definitions. In J. Barwise (Ed.),
Handbook of Mathematical Logic, pp. 739-782. North-Holland.
Bird, R. and P. Wadler (1988). Introduction to Functional Program-

ming. Prentice-Hall.

Bloom, B. (1988). Can LCF be toppedI" Flat lattice models of typed lambda
calculus. In Proceedings 3rd LICS, pp. 282 295.

Crole, R. L. and A. D. Gordon (1994, September). A sound metalogical
semantics for input/output effects. In Computer Science Logic’94,
Kazimierz, Poland. Proceedings to appear in Springer LNCS.

Davey, B. A. and H. A. Priestley (1990). Introduction to Lattices and
Order. Cambridge University Press.

Felleisen, M. and D. Friedman (1986). Control operators, the SECD-machine,
and the A-calculus. In Formal Description of Programming Con-
cepts III, pp. 193-217. North-Holland.

Gordon, A. D. (1994a). Bisimilarity as a theory of functional programming.
Submitted for publication.

Gordon, A. D. (1994b). Functional Programming and Input/Output.
Cambridge University Press. Revision of 1992 PhD dissertation.

Howe, D. J. (1989). Equality in lazy computation systems. In Proceedings
4th LICS, pp. 198 203.

Hughes, J. and A. Moran (1993, June). Natural semantics for non-
determinism. In Proceedings of El Winterméte, pp. 211 222.
Chalmers PMG. Available as Report 73.

Milner, R. (1977). Fully abstract models of typed lambda-calculi. TCS 4,
1-23.

Milner, R. (1989). Communication and Concurrency. Prentice-Hall.

Morris, J. H. (1968, December). Lambda-Calculus Models of Program-
ming Languages. Ph. D. thesis, MIT.

Ong, C.-H. L. (1993, June). Non-determinism in a functional setting (ex-
tended abstract). In Proceedings 8th LICS, pp. 275 286.

Ong, C.-H. L. (1994, January). Correspondence between operational and
denotational semantics: The full abstraction problem for PCF. Submitted
to Handbook of Logic in Computer Science Volume 3, OUP 1994.

Park, D. (1981, March). Concurrency and automata on infinite sequences.
In P. Deussen (Ed.), Theoretical Computer Science: 5th GI-
Conference, Volume 104 of Lecture Notes in Computer Science,
pp. 167-183. Springer-Verlag.

Pitts, A. and I. Stark (1993, June). On the observable properties of higher
order functions that dynamically create local names (preliminary report).
In SIPL’93, pp. 31 45.

Pitts, A. M. (1994). A co-induction principle for recursively defined domains.
TCS 124, 195-219.

Plotkin, G. D. (1977). LCF considered as a programming language. TCS 5,
223-255.

Ritter, E. and A. M. Pitts (1994, September). A fully abstract translation
between a A-calculus with reference types and Standard ML. To appear
in TLCA’95.

Sander, H. (1992). A Logic of Functional Programs with an Applica-
tion to Concurrency. Ph. D. thesis, Chalmers PMG.

Sands, D. (1992). Operational theories of improvement in functional lan-
guages (extended abstract). In Functional Programming, Glasgow
1991, Workshops in Computing, pp. 298 311. Springer-Verlag.

Sands, D. (1994, May). Total correctness and improvement in the transforma-
tion of functional programs (1st draft). DIKU, University of Copenhagen.

Smith, S. F. (1991). From operational to denotational semantics. In MFPS
VII, Pittsburgh, Volume 598 of Lecture Notes in Computer Sci-
ence, pp. 54 76. Springer-Verlag.

Turner, D. (Ed.) (1990). Research Topics in Functional Programming.
Addison-Wesley.

Winskel, G. (1993). The Formal Semantics of Programming Lan-
guages. MIT Press, Cambridge, Mass.

