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Global Positioning System (GPS)





How did we get into this?



Accidents Happen



Bulldozer with Beacons



Applications of our Algorithm

• “Thunder Basin Coal Mine” – locating bulldozers

• Surveying without triangulation (Mining)

• Mobile computing – sensor networks

• Geosensing networks (SmartGeo)

• Precision manufacturing

• Positioning systems for medical applications

(Electrical Engineering)

• “Ignite” program – blasting rockets







Problem Statement and Setup



Notations

θ = (x, y, z) : spatial coordinates of target point θ.

Bi = (xi, yi, zi) : exact location of beacon Bi.

i = 1, 2, . . . , n with n ≥ 4.

di(θ) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 : true distance

between beacon Bi and target θ.

(xr, yr, zr) : exact coordinates of a reference point.

dir =
√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2 : true distance

between reference point and beacon Bi.

dr(θ) =
√

(x− xr)2 + (y − yr)2 + (z − zr)2 : true distance

between the reference point and the target θ.



Derivation of an Exact Linear Model

Apply a simple trick (the cosine rule!)

di(θ)
2 = (x− xi)2 + (y − yi)2 + (z − zi)2

= (x− xr + xr − xi)2 + (y − yr + yr − yi)2

+(z − zr + zr − zi)2

= (x− xr)2 + 2 (xr − xi)(x− xr) + (xr − xi)2

+(y − yr)2 + 2 (yr − yi)(y − yr) + (yr − yi)2

+(z − zr)2 + 2 (zr − zi)(z − zr) + (zr − zi)2



Keep the double product terms on the left hand side.

2
(
(xi − xr)(x− xr) + (yi − yr)(y − yr) + (zi − zr)(z − zr)

)
= (x− xr)2 + (y − yr)2 + (z − zr)2

+(xr − xi)2 + (yr − yi)2 + (zr − zi)2 − di(θ)2

= dr(θ)2 + dir
2 − di(θ)2

where i = 1, 2, . . . , n with n ≥ 4.



Use any beacon (say, B1) as reference point.

Replace exact distances by measured distances.

(x2 − x1)(x− x1) + (y2 − y1)(y − y1) + (z2 − z1)(z − z1)

≈
1

2

[
r1

2 − r22 + d2
21

]
:= b21

(x3 − x1)(x− x1) + (y3 − y1)(y − y1) + (z3 − z1)(z − z1)

≈
1

2

[
r1

2 − r32 + d2
31

]
:= b31

...

(xn − x1)(x− x1) + (yn − y1)(y − y1) + (zn − z1)(z − z1)

≈
1

2

[
r1

2 − rn2 + d2
n1

]
:= bn1

Linear system of (n− 1) equations in 3 unknowns.



Linear Least Squares (LSQ) Model

Write the linear system in matrix form: Ax ≈ b

with

A=


x2−x1 y2−y1 z2−z1
x3−x1 y3−y1 z3−z1

...
...

...

xn−x1 yn−y1 zn−z1

, x=


x−x1

y−y1

z−z1

, b=


b21

b31

...

bn1





Minimizing the sum of the squares of the residuals

S = (b−Ax)T(b−Ax)

requires solving the normal equation

ATAx = ATb

Solution method depends on the condition number of
ATA.

If ATA is non-singular and well-conditioned then

x = (ATA)−1ATb



If ATA is nearly-singular (poorly conditioned):

? Compute A = QR

Q is orthonormal matrix,

R is upper-triangular matrix.

? Solve Rx = QT~b

by back substitution when A is full rank.

The target θ is then θ =


x

y

z

 = x +


x1

y1

z1

 .



Nonlinear Least Squares (NLSQ) Model

Minimize the sum of the squares of the errors on the

distances:

F (θ) = F (x, y, z) =

n∑
i=1

fi(x, y, z)
2

where

fi(x, y, z) = fi(θ) := di(θ)− ri
=
√

(x− xi)2 + (y − yi)2 + (z − zi)2 − ri.

Recall: ri are the measured distances between the
target θ = (x, y, z) and beacon Bi = (xi, yi, zi), and n is

the number of beacons.



Differentiating F with respect to x yields

∂F (θ)

∂x
= 2

n∑
i=1

fi
∂fi(θ)

∂x
= 2

n∑
i=1

fi
∂di(θ)

∂x
.

The formulae for ∂F (θ)
∂y

and ∂F (θ)
∂z

are similar.

Let

f(θ) =


f1(θ)

f2(θ)
...

fn(θ)

, ∇F (θ) =



∂F (θ)
∂x

∂F (θ)
∂y

∂F (θ)
∂z





and define the Jacobian as

J(θ) =



∂d1(θ)
∂x

∂d1(θ)
∂y

∂d1(θ)
∂z

∂d2(θ)
∂x

∂d2(θ)
∂y

∂d2(θ)
∂z

...
...

...

∂dn(θ)
∂x

∂dn(θ)
∂y

∂dn(θ)
∂z





We must solve

∇F (θ) = 2J(θ)Tf(θ) = 0

where

J(θ)Tf(θ) =



∑n
i=1

(x−xi)fi(θ)
di(θ)

∑n
i=1

(y−yi)fi(θ)
di(θ)

∑n
i=1

(z−zi)fi(θ)
di(θ)


.



Newton-Raphson Method – Iterative Solver

Problem: Solve the scalar problem f(x) = 0

Solution: Newton’s method:

xk+1 = xk −
f(xk)

f ′(xk)

Problem: Solve the vector problem: f(x) = 0

simplest case: n equations, n unknowns.

Solution: Newton’s method:

xk+1 = xk − [J(xk)]
−1f(xk)



Apply Newton’s method to g(θ) = J(θ)Tf(θ) = 0.

Solution:

θ{k+1} = θ{k} − [J(θ{k})
TJ(θ{k})]

−1J(θ{k})
T f(θ{k})

where θ{k} denotes the kth estimate of the target.

A reasonably accurate initial guess, θ{1}, could be

computed with the LSQ method.

Starting with θ{1}, iterate until the change

‖θ{k+1} − θ{k}‖ is sufficiently small.



The expression for J(θ)TJ(θ) is

∑n
i=1

(x−xi)
2

di(θ)
2

∑n
i=1

(x−xi)(y−yi)

di(θ)
2

∑n
i=1

(x−xi)(z−zi)

di(θ)
2

∑n
i=1

(x−xi)(y−yi)

di(θ)
2

∑n
i=1

(y−yi)
2

di(θ)
2

∑n
i=1

(y−yi)(z−zi)

di(θ)
2

∑n
i=1

(x−xi)(z−zi)

di(θ)
2

∑n
i=1

(y−yi)(z−zi)

di(θ)
2

∑n
i=1

(z−zi)
2

di(θ)
2


.



Mathematica Demonstration 1

Computation of Target using the NLSQ Method

Mathematica’s NMinimize Function



Mathematica Demonstration 2

Computation of Target using the NLSQ Method

Newton Iteration



Mathematica Demonstration 3

Computation of Target using the LSQ Method



Simulation – Results of Experiments

Beacon coordinates (8 beacons were used)

X Y Z

920 3977.5 −77.125

7360 2577.5 −53.125

8090 −3892.5 83.875

3910 −4512.5 27.875

−2710 −3742.5 4.875

−5420 −1082.5 55.875

−6740 1657.5 −42.125

−5410 5017.5 −0.125



Location of 8 Beacons



Test Grid of 1000 Points



• Requirement: determine target within 2 feet

(distances measured within 1
2

foot).

• One thousand target points on a rectangular grid.

• Top of box is 5 feet below lowest beacon.

• For each target point, 10, 000 data sets were

generated.

• Each data set consisted of one measurement from

each beacon.

• Each measurement was obtained by adding to the

true distance a random error distributed uniformly

on (−0.5, 0.5).



• Methods were implemented in Macsyma and C++

• Horizontal coordinates were accurate

(98% of test points).

• Vertical coordinate (height) was imprecise

(off by several feet for 5% of test points).

• Trouble with hardware (AccuTrack, Canada).



Conclusions

• Exact linearization for nonlinear problem.

• LSQ method is reliable even with small samples.

• NLSQ method gives best performance.

• Methods are easy to implement.

• Good alternative for applications where GPS

cannot be used.

• Publications are on the Internet:

URL: http://inside.mines.edu/∼whereman/



Thank You
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